Socio-environmental Framework for Integration of Thermal Mass Windcatchers with Lightweight Tensile Structures in Contemporary Hot-Arid Urban Context of Tehran
dc.contributor.advisor | Smith, Shane Ida | en |
dc.contributor.author | Mirhosseiniardakani, Homeiraalsadat | |
dc.creator | Mirhosseiniardakani, Homeiraalsadat | en |
dc.date.accessioned | 2017-04-11T15:48:07Z | |
dc.date.available | 2017-04-11T15:48:07Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/10150/623085 | |
dc.description.abstract | The integration of windcatchers in the urban context of hot-arid context of Tehran needs to address two changes in the current utilization: 1) high density context which makes it harder to access to sufficient airflow in the urban context, and 2) sociocultural shifts towards dependencies on modern mechanical air-conditioning systems. Windcatchers are unique tools existing in the hot-arid regions in the Middle East. Windcatcher uses thermal mass, evaporation techniques, and stack effect to deliver human comfort to the residents of the building. Vernacular windcatchers are useful for moderating the indoor air temperature. Yet, using natural ventilation techniques as passive strategies are outdated in recent decades and there are a couple of reasons for that such as maintenance difficulties, lack of urban air filtration methods, decline of cooling efficiency due to modified airflow patterns, habitable space utilization modifications, and dependencies on mechanical cooling systems. On the other hand, tensile structures have the potential to be considered as a tool to upgrade the windcatchers and use them in the modern urban context which will also help reducing energy and reviving local textile industry. This research tries to propose a method that emphasizes on the adaptability of windcatchers and tensile structures, inhabitant control, airflow control and reuse of heavy thermal mass. Also, the proposed model offers improvements for environmental performance of lightweight textiles, such as particulate matter filtration, kinetic energy transformation, and photoresponse for passive shading or natural daylighting strategies. The main goal of this research is to define the parameters required to enhance inhabitant adaptability with the windcatcher and also natural ventilation cooling system. In this research, important characteristics of Sangelaj neighborhood in Tehran are considered such as existing windcatcher dimensions, micro-climate conditions, and urban morphology. Then, different methods are proposed to develop the heat transfer and airflow analysis of the integration between windcatchers and tensile structures. The research suggests methods for adaptation of windcatchers in existing buildings of Tehran using tensile structures. It also proposes methods for the new buildings in the urban context of Sangelaj neighborhood in Tehran. | |
dc.language.iso | en_US | en |
dc.publisher | The University of Arizona. | en |
dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en |
dc.subject | climate responsive architecture | en |
dc.subject | integration | en |
dc.subject | windcatcher | en |
dc.subject | adaptable design | en |
dc.title | Socio-environmental Framework for Integration of Thermal Mass Windcatchers with Lightweight Tensile Structures in Contemporary Hot-Arid Urban Context of Tehran | en_US |
dc.type | text | en |
dc.type | Electronic Thesis | en |
thesis.degree.grantor | University of Arizona | en |
thesis.degree.level | masters | en |
dc.contributor.committeemember | Smith, Shane Ida | en |
dc.contributor.committeemember | Medlin, Richard Larry | en |
dc.contributor.committeemember | Domin, Christopher | en |
thesis.degree.discipline | Graduate College | en |
thesis.degree.discipline | Architecture | en |
thesis.degree.name | M.S. | en |
dc.description.admin-note | Graduate College contacted us with a revised file on 11-Apr-2017; replaced the file we had just loaded with the revised file / Kimberly | |
refterms.dateFOA | 2018-06-24T20:17:42Z | |
html.description.abstract | The integration of windcatchers in the urban context of hot-arid context of Tehran needs to address two changes in the current utilization: 1) high density context which makes it harder to access to sufficient airflow in the urban context, and 2) sociocultural shifts towards dependencies on modern mechanical air-conditioning systems. Windcatchers are unique tools existing in the hot-arid regions in the Middle East. Windcatcher uses thermal mass, evaporation techniques, and stack effect to deliver human comfort to the residents of the building. Vernacular windcatchers are useful for moderating the indoor air temperature. Yet, using natural ventilation techniques as passive strategies are outdated in recent decades and there are a couple of reasons for that such as maintenance difficulties, lack of urban air filtration methods, decline of cooling efficiency due to modified airflow patterns, habitable space utilization modifications, and dependencies on mechanical cooling systems. On the other hand, tensile structures have the potential to be considered as a tool to upgrade the windcatchers and use them in the modern urban context which will also help reducing energy and reviving local textile industry. This research tries to propose a method that emphasizes on the adaptability of windcatchers and tensile structures, inhabitant control, airflow control and reuse of heavy thermal mass. Also, the proposed model offers improvements for environmental performance of lightweight textiles, such as particulate matter filtration, kinetic energy transformation, and photoresponse for passive shading or natural daylighting strategies. The main goal of this research is to define the parameters required to enhance inhabitant adaptability with the windcatcher and also natural ventilation cooling system. In this research, important characteristics of Sangelaj neighborhood in Tehran are considered such as existing windcatcher dimensions, micro-climate conditions, and urban morphology. Then, different methods are proposed to develop the heat transfer and airflow analysis of the integration between windcatchers and tensile structures. The research suggests methods for adaptation of windcatchers in existing buildings of Tehran using tensile structures. It also proposes methods for the new buildings in the urban context of Sangelaj neighborhood in Tehran. |