• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Investigation of the Environmental Fate and Transport of 2,4- dinitroanisole(DNAN) in Soils

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15270_sip1_m.pdf
    Size:
    3.483Mb
    Format:
    PDF
    Download
    Author
    Arthur, Jennifer
    Issue Date
    2017
    Keywords
    2, 4-dinitroanisole (DNAN)
    Dissolution
    IMX-101
    IMX-104
    Insensitive munitions
    Soil adsorption
    Advisor
    Brusseau, Mark
    Dontsova, Katerina
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 20-Feb-2018
    Abstract
    New explosive compounds that are less sensitive to shock and high temperatures are being tested on military ranges as replacements for 2, 4, 6-trinitrotoluene (TNT) and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). One of the two compounds being tested is 2, 4-dinitroanisole (DNAN), which has good detonation characteristics and is one of the main ingredients in a suite of explosive formulations being tested. Data on the fate and transport of DNAN is needed to determine its potential to reach groundwater and be transported off base, a result which could create future contamination problems on military training ranges and trigger regulatory action. In this study, I measured how DNAN in solution interacts with different types of soils from across the United States. I conducted kinetic and equilibrium batch soil adsorption experiments, saturated column experiments with DNAN and dissolution and transport studies of insensitive munitions (IMX-101, IMX -104), which include DNAN, 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), under steady state and transient conditions. In the rate studies, change in DNAN concentration with time was evaluated using the first order kinetic equation. Solution mass-loss rate coefficients ranged between 0.0002 h-1 and 0.0068 h-1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L kg-1, and Freundlich coefficients between 1.3 and 34 mg1-n Ln kg-1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil. In saturated miscible-displacement experiments, it was shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Dissolution miscible-displacement experiments demonstrated that insensitive munition compounds dissolved in order of aqueous solubility as indicated by earlier lab and outdoor dissolution studies. The sorption of NTO and NQ was low, while RDX, HMX, and DNAN all adsorbed to the soils. DNAN transformed in soils with formation of amino-reduction products, 2- ANAN and 4-ANAN. Adsorption parameters determined by HYDRUS-1D generally agreed with batch and column study adsorption coefficients for pure NTO and DNAN. The magnitudes of retardation and transformation observed in these studies result in significant attenuation potential for DNAN in soils, which would reduce risk of groundwater contamination.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.