Show simple item record

dc.contributor.authorHartiala, Jaana A.
dc.contributor.authorWilson Tang, W. H.
dc.contributor.authorWang, Zeneng
dc.contributor.authorCrow, Amanda L.
dc.contributor.authorStewart, Alexandre F. R.
dc.contributor.authorRoberts, Robert
dc.contributor.authorMcPherson, Ruth
dc.contributor.authorErdmann, Jeanette
dc.contributor.authorWillenborg, Christina
dc.contributor.authorHazen, Stanley L.
dc.contributor.authorAllayee, Hooman
dc.date.accessioned2017-04-26T22:18:15Z
dc.date.available2017-04-26T22:18:15Z
dc.date.issued2016-01-29
dc.identifier.citationGenome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease 2016, 7:10558 Nature Communicationsen
dc.identifier.issn2041-1723
dc.identifier.doi10.1038/ncomms10558
dc.identifier.urihttp://hdl.handle.net/10150/623257
dc.description.abstractMetabolites derived from dietary choline and L-carnitine, such as trimethylamine N-oxide and betaine, have recently been identified as novel risk factors for atherosclerosis in mice and humans. We sought to identify genetic factors associated with plasma betaine levels and determine their effect on risk of coronary artery disease (CAD). A two-stage genome-wide association study (GWAS) identified two significantly associated loci on chromosomes 2q34 and 5q14.1. The lead variant on 2q24 (rs715) localizes to carbamoyl-phosphate synthase 1 (CPS1), which encodes a mitochondrial enzyme that catalyses the first committed reaction and rate-limiting step in the urea cycle. Rs715 is also significantly associated with decreased levels of urea cycle metabolites and increased plasma glycine levels. Notably, rs715 yield a strikingly significant and protective association with decreased risk of CAD in only women. These results suggest that glycine metabolism and/or the urea cycle represent potentially novel sex-specific mechanisms for the development of atherosclerosis.
dc.language.isoenen
dc.publisherNATURE PUBLISHING GROUPen
dc.relation.urlhttp://www.nature.com/doifinder/10.1038/ncomms10558en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.titleGenome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery diseaseen
dc.typeArticleen
dc.identifier.journalNature Communicationsen
dc.description.notePublished open access.en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-07-02T22:15:28Z
html.description.abstractMetabolites derived from dietary choline and L-carnitine, such as trimethylamine N-oxide and betaine, have recently been identified as novel risk factors for atherosclerosis in mice and humans. We sought to identify genetic factors associated with plasma betaine levels and determine their effect on risk of coronary artery disease (CAD). A two-stage genome-wide association study (GWAS) identified two significantly associated loci on chromosomes 2q34 and 5q14.1. The lead variant on 2q24 (rs715) localizes to carbamoyl-phosphate synthase 1 (CPS1), which encodes a mitochondrial enzyme that catalyses the first committed reaction and rate-limiting step in the urea cycle. Rs715 is also significantly associated with decreased levels of urea cycle metabolites and increased plasma glycine levels. Notably, rs715 yield a strikingly significant and protective association with decreased risk of CAD in only women. These results suggest that glycine metabolism and/or the urea cycle represent potentially novel sex-specific mechanisms for the development of atherosclerosis.


Files in this item

Thumbnail
Name:
Genome-wide association study. ...
Size:
644.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record