• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Emitter Source Geolocation from Imparted Rotor Blade Modulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15103_sip1_m.pdf
    Size:
    13.96Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Thumbnail
    Name:
    Raytracer3D.zip
    Size:
    307.8Kb
    Format:
    Unknown
    Description:
    raytracing application
    Download
    Author
    Schucker, Thomas Douglas
    Issue Date
    2016
    Keywords
    Rotor Blade Modulation
    RF Ray Tracing
    Advisor
    Bose, Tamal
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In RF communications with a rotorcraft such as a helicopter, the rotor blades can impart a modulation onto the received signal called Rotor Blade Modulation (RBM). This modulation is caused by the reflection of a signal off the rotating blades. The reflected signal is Doppler shifted based on where the signal is reflected along the length of the blade as well as the angle between the axis of rotation and the emitter. RBM is known to degrade the performance of RF communications on rotorcraft and can be used in radar applications to detect and classify aircraft, but there is little on its usefulness in other areas. This thesis looks at the ability to utilize the RBM phenomenon on the rotorcraft itself to geo-locate and track a signal emitter on the ground. To do this a 3D RF ray tracing program was developed in C++ to produce simulations of RBM signals. The developed program is based on optical ray tracing algorithms with modified physical propagation effects for RF signals, and swapping lights and cameras for RF transmitters and receivers respectively. The ray tracer was then run over a realistic set of physical parameters to determine their effects on the received signal; this includes transmitter azimuth and elevation angle, receiver position, blade pitch, etc. along with their combinations. The simulations of the azimuth and elevation angle produce predictable modulations on the received signal. Based on the trends in the signal's modulation, a DSP algorithm was distilled down that accurately determines the azimuth and elevation angle of the transmitter from simulated signal data.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.