Show simple item record

dc.contributor.authorSalazar, Eduardo
dc.date.accessioned2017-05-25T17:42:26Z
dc.date.available2017-05-25T17:42:26Z
dc.date.issued2017-05-25
dc.identifier.urihttp://hdl.handle.net/10150/623620
dc.descriptionA Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine.en
dc.description.abstractObstructive sleep apnea (OSA) is a condition characterized by upper airway obstruction during sleep causing intermittent hypoxia and nighttime awakening. It is a common condition in the United States that is often undiagnosed. It is a significant risk factor for decreased daytime productivity, quality of life, cardiovascular disease, and death. The current gold standard for diagnosis of OSA is laboratory‐based polysomnography (PSG). While PSG is necessary for the diagnosis and monitoring of OSA, many patients have limited access to PSG due to wait times at PSG laboratories or economic or geographic limitations. Portable sleep monitoring has been studied as a possible solution for patients who do not have access to timely PSG. This study aimed to use the Zephyr BioHarness 3, a chest‐worn physical activity monitor that records movement and physiologic data in real‐time, to detect apnea events in patients with suspected OSA undergoing single‐night laboratory PSG. Twenty patients underwent single‐night laboratory‐based PSG while simultaneously wearing the Zephyr BioHarness 3. The Zephyr BioHarness 3 data was analyzed using three methods. First, apnea events were identified in 10‐second windows of Zephyr data via support vector machine, logistic regression, and neural network (sensitivity = 76.0 ± 0.3%, specificity = 62.7 ± 0.2%, accuracy = 63.7 ± 0.1%). Second, apnea events were identified using the mean, median, and variance of the 10‐second windows (sensitivity = 72.3 ± 0.3%, specificity = 69.4 ± 0.1%), accuracy 69.6 ± 0.1%). Third, apnea events were identified using phase‐space transformation of the Zephyr BioHarness 3 data (sensitivity = 76.9 ± 0.3%, specificity = 77.9 ± 0.1 %, accuracy = 77.9 ± 0.1%). The Zephyr BioHarness shows initial promise as a possible OSA screening tool for patients suspected of OSA but who lack access to timely laboratory‐based PSG.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the College of Medicine - Phoenix, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectCPAPen
dc.subjectSleep Monitoren
dc.subjectBioHarnessen
dc.subjectHome Settingen
dc.subjectPhase-Space Transformationen
dc.subjectPSGen
dc.subject.meshSleep Apnea Syndromesen
dc.subject.meshSleep Apnea, Obstructiveen
dc.subject.meshSupport Vector Machineen
dc.subject.meshMonitoring, Physiologicen
dc.subject.meshSensitivity and Specificityen
dc.subject.meshTherapeuticsen
dc.subject.meshQuality of Lifeen
dc.subject.meshPolysomnographyen
dc.subject.meshContinuous Positive Airway Pressureen
dc.subject.meshSignal Processing, Computer-Assisteden
dc.subject.meshBiomechanical Phenomenaen
dc.subject.meshActigraphyen
dc.titleIdentification of Apnea Events Using a Chest‐Worn Physical Activity Monitoren_US
dc.typetext; Electronic Thesisen
dc.contributor.departmentThe University of Arizona College of Medicine - Phoenixen
dc.description.collectioninformationThis item is part of the College of Medicine - Phoenix Scholarly Projects 2017 collection. For more information, contact the Phoenix Biomedical Campus Library at pbc-library@email.arizona.edu.en_US
dc.contributor.mentorBuman, Matthewen
refterms.dateFOA2018-09-11T19:38:21Z
html.description.abstractObstructive sleep apnea (OSA) is a condition characterized by upper airway obstruction during sleep causing intermittent hypoxia and nighttime awakening. It is a common condition in the United States that is often undiagnosed. It is a significant risk factor for decreased daytime productivity, quality of life, cardiovascular disease, and death. The current gold standard for diagnosis of OSA is laboratory‐based polysomnography (PSG). While PSG is necessary for the diagnosis and monitoring of OSA, many patients have limited access to PSG due to wait times at PSG laboratories or economic or geographic limitations. Portable sleep monitoring has been studied as a possible solution for patients who do not have access to timely PSG. This study aimed to use the Zephyr BioHarness 3, a chest‐worn physical activity monitor that records movement and physiologic data in real‐time, to detect apnea events in patients with suspected OSA undergoing single‐night laboratory PSG. Twenty patients underwent single‐night laboratory‐based PSG while simultaneously wearing the Zephyr BioHarness 3. The Zephyr BioHarness 3 data was analyzed using three methods. First, apnea events were identified in 10‐second windows of Zephyr data via support vector machine, logistic regression, and neural network (sensitivity = 76.0 ± 0.3%, specificity = 62.7 ± 0.2%, accuracy = 63.7 ± 0.1%). Second, apnea events were identified using the mean, median, and variance of the 10‐second windows (sensitivity = 72.3 ± 0.3%, specificity = 69.4 ± 0.1%), accuracy 69.6 ± 0.1%). Third, apnea events were identified using phase‐space transformation of the Zephyr BioHarness 3 data (sensitivity = 76.9 ± 0.3%, specificity = 77.9 ± 0.1 %, accuracy = 77.9 ± 0.1%). The Zephyr BioHarness shows initial promise as a possible OSA screening tool for patients suspected of OSA but who lack access to timely laboratory‐based PSG.


Files in this item

Thumbnail
Name:
SalazarE Poster.pdf
Size:
79.67Kb
Format:
PDF
Thumbnail
Name:
SalazarE Thesis.pdf
Size:
160.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record