Show simple item record

dc.contributor.authorLaskar, Tanmoy
dc.contributor.authorAlexander, Kate D.
dc.contributor.authorBerger, E.
dc.contributor.authorFong, Wen-fai
dc.contributor.authorMargutti, R.
dc.contributor.authorShivvers, Isaac
dc.contributor.authorWilliams, Peter K. G.
dc.contributor.authorKopač, Drejc
dc.contributor.authorKobayashi, Shiho
dc.contributor.authorMundell, Carole
dc.contributor.authorGomboc, Andreja
dc.contributor.authorZheng, WeiKang
dc.contributor.authorMenten, Karl M.
dc.contributor.authorGraham, M. L.
dc.contributor.authorFilippenko, A. V.
dc.date.accessioned2017-06-08T16:52:25Z
dc.date.available2017-06-08T16:52:25Z
dc.date.issued2016-12-08
dc.identifier.citationA REVERSE SHOCK IN GRB 160509A 2016, 833 (1):88 The Astrophysical Journalen
dc.identifier.issn1538-4357
dc.identifier.doi10.3847/1538-4357/833/1/88
dc.identifier.urihttp://hdl.handle.net/10150/624020
dc.description.abstractWe present the second multi-frequency radio detection of a reverse shock in a gamma-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope gamma-ray burst 160509A at z - 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at. less than or similar to 10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of n(0) approximate to 10(-3) cm(-3), supporting our previous suggestion that a low- density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N-H approximate to 1.5. x 10(22) cm(-2), and a high rest-frame optical extinction, A(V) approximate to 3.4 mag. We identify a jet break in the X-ray light curve at t(jet) approximate to 6 days, and thus derive a jet opening angle of theta(jet) approximate to 4 degrees, yielding a beaming-corrected kinetic energy and radiated gamma-ray energy of E-K approximate to 4 x 10(50) erg and E-gamma approximate to 1.3 x 10(51) erg ( 1-10(4) keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of t(dec) approximate to 460 s approximate to T-90, a Lorentz factor of Gamma( t(dec)) approximate to 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of R-B equivalent to is an element of(B, RS)/is an element of(B, FS) approximate to 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of gamma-ray burst ejecta.
dc.description.sponsorshipNSF [AST-1411763, AST-1211916, PHYS-1066293]; NASA ADA grant [NNX15AE50G]; NASA through Einstein Postdoctoral Fellowship [PF4-150121]; Richard and Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation; NASA/Swift grant [NNX12AD73G]; W.M. Keck Foundation; VLA Large Program [15A-235]en
dc.language.isoenen
dc.publisherIOP PUBLISHING LTDen
dc.relation.urlhttp://stacks.iop.org/0004-637X/833/i=1/a=88?key=crossref.e71626a597eba8591f931df2c0808715en
dc.rights© 2016. The American Astronomical Society. All rights reserved.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectgamma-ray burst: generalen
dc.subjectgamma-ray burst: individual (GRB 160509A)en
dc.titleA REVERSE SHOCK IN GRB 160509Aen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Steward Observen
dc.identifier.journalThe Astrophysical Journalen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-08-13T21:29:41Z
html.description.abstractWe present the second multi-frequency radio detection of a reverse shock in a gamma-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope gamma-ray burst 160509A at z - 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at. less than or similar to 10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of n(0) approximate to 10(-3) cm(-3), supporting our previous suggestion that a low- density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N-H approximate to 1.5. x 10(22) cm(-2), and a high rest-frame optical extinction, A(V) approximate to 3.4 mag. We identify a jet break in the X-ray light curve at t(jet) approximate to 6 days, and thus derive a jet opening angle of theta(jet) approximate to 4 degrees, yielding a beaming-corrected kinetic energy and radiated gamma-ray energy of E-K approximate to 4 x 10(50) erg and E-gamma approximate to 1.3 x 10(51) erg ( 1-10(4) keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of t(dec) approximate to 460 s approximate to T-90, a Lorentz factor of Gamma( t(dec)) approximate to 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of R-B equivalent to is an element of(B, RS)/is an element of(B, FS) approximate to 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of gamma-ray burst ejecta.


Files in this item

Thumbnail
Name:
Laskar_2016_ApJ_833_88.pdf
Size:
1.370Mb
Format:
PDF
Description:
FInal Published Version

This item appears in the following Collection(s)

Show simple item record