We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, IPLP dissertations, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.

Show simple item record

dc.contributor.authorUdall, Bradley
dc.contributor.authorOverpeck, Jonathan T.
dc.date.accessioned2017-06-08T18:00:21Z
dc.date.available2017-06-08T18:00:21Z
dc.date.issued2017-03
dc.identifier.citationThe twenty-first century Colorado River hot drought and implications for the future 2017, 53 (3):2404 Water Resources Researchen
dc.identifier.issn00431397
dc.identifier.doi10.1002/2016WR019638
dc.identifier.urihttp://hdl.handle.net/10150/624032
dc.description.abstractBetween 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9 degrees C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur. Plain Language Summary Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change. Previous comparable droughts were caused by a lack of precipitation, not high temperatures. As temperatures increase in the 21st century due to continued human emissions of greenhouse gasses, additional temperature-induced flow losses will occur. These losses may exceed 20% at mid-century and 35% at end-century. Additional precipitation may reduce these temperature-induced losses somewhat, but to date no precipitation increases have been noted and climate models do not agree that such increases will occur. These results suggest that future climate change impacts on the Colorado River will be greater than currently assumed. Reductions in greenhouse gas emissions will lead to lower future temperatures and hence less flow loss.
dc.description.sponsorshipColorado Water Institute, National Science Foundation; NOAA Climate Assessment for the Southwest; U.S. Geological Survey Southwest Climate Science Centeren
dc.language.isoenen
dc.publisherAMER GEOPHYSICAL UNIONen
dc.relation.urlhttp://doi.wiley.com/10.1002/2016WR019638en
dc.rights© 2017. American Geophysical Union. All Rights Reserved.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectColorado River Basinen
dc.subjectclimate changeen
dc.subjectColorado River Compacten
dc.subjectmegadroughten
dc.titleThe twenty-first century Colorado River hot drought and implications for the futureen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Geosci, Inst Environmen
dc.contributor.departmentUniv Arizona, Dept Hydrol & Atmospher Scien
dc.identifier.journalWater Resources Researchen
dc.description.note6 month embargo;First published: 24 March 2017en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
dc.contributor.institutionColorado Water Institute, Colorado State University; Fort Collins Colorado USA
dc.contributor.institutionColorado River Research Group; Boulder Colorado USA
refterms.dateFOA2017-09-25T00:00:00Z
html.description.abstractBetween 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9 degrees C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur. Plain Language Summary Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change. Previous comparable droughts were caused by a lack of precipitation, not high temperatures. As temperatures increase in the 21st century due to continued human emissions of greenhouse gasses, additional temperature-induced flow losses will occur. These losses may exceed 20% at mid-century and 35% at end-century. Additional precipitation may reduce these temperature-induced losses somewhat, but to date no precipitation increases have been noted and climate models do not agree that such increases will occur. These results suggest that future climate change impacts on the Colorado River will be greater than currently assumed. Reductions in greenhouse gas emissions will lead to lower future temperatures and hence less flow loss.


Files in this item

Thumbnail
Name:
Udall_et_al-2017-Water_Resourc ...
Size:
2.525Mb
Format:
PDF
Description:
FInal Published Version

This item appears in the following Collection(s)

Show simple item record