The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe
Name:
Tinker_2017_ApJ_839_121.pdf
Size:
968.8Kb
Format:
PDF
Description:
FInal Published Version
Author
Tinker, Jeremy L.Brownstein, Joel R.

Guo, Hong

Leauthaud, Alexie
Maraston, Claudia
Masters, Karen L.

Montero-Dorta, Antonio D.
Thomas, Daniel
Tojeiro, Rita
Weiner, Benjamin

Zehavi, Idit
Olmstead, Matthew D.
Affiliation
Univ Arizona, Steward ObservIssue Date
2017-04-24Keywords
cosmology: observationsgalaxies: abundances
galaxies: evolution
galaxies: halos
galaxies: luminosity function
mass function
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe 2017, 839 (2):121 The Astrophysical JournalJournal
The Astrophysical JournalRights
© 2017. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar masses of Chen et al. clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA masses, we measure the large-scale bias as a function of M-* for galaxies with logM(*) >= 11.4, correcting for incompleteness at the low-mass end of our measurements. Using the abundance matching ansatz to connect dark matter halo mass to stellar mass, we construct theoretical models of b(M-*) that match the same stellar mass function but have different amounts of scatter in stellar mass at fixed halo mass, sigma(logM*). Using this approach, we find sigma(logM*) = 0.18(+0.01) (-0.02). This value includes both intrinsic scatter as well as random errors in the stellar masses. To partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an upper limit to the intrinsic scatter of 0.16 dex.ISSN
1538-4357Version
Final published versionSponsors
NSF [AST-1612085]; Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); National Astronomical Observatory of China; New Mexico State University; New York University; University of Notre Dame; Observatario Nacional/MCTI; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of Washington; University of Wisconsin; Vanderbilt University; Yale UniversityAdditional Links
http://stacks.iop.org/0004-637X/839/i=2/a=121?key=crossref.38e86414243016adfe5f4f0dba1d44a8ae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/aa6845
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Planck's dusty GEMS III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z=1.5Canameras, R.; Nesvadba, N. P. H.; Kneissl, R.; Limousin, M.; Gavazzi, R.; Scott, D.; Dole, H.; Frye, B.; Koenig, S.; Le Floc'h, E.; et al. (EDP SCIENCES S A, 2017-03-24)We study the properties of the foreground galaxy of the Ruby, the brightest gravitationally lensed high-redshift galaxy on the sub-millimeter sky as probed by the Planck satellite, and part of our sample of Planck's dusty GEMS. The Ruby consists of an Einstein ring of 1.4" diameter at z = 3.005 observed with ALMA at 0.1" resolution, centered on a faint, red, massive lensing galaxy seen with HST/WFC3, which itself has an exceptionally high redshift, z = 1.525 +/- 0.001, as confirmed with VLT/X-shooter spectroscopy. Here we focus on the properties of the lens and the lensing model obtained with LENSTOOL. The rest-frame optical morphology of this system is strongly dominated by the lens, while the Ruby itself is highly obscured, and contributes less than 10% to the photometry out to the K band. The foreground galaxy has a lensing mass of (3.70 +/- 0.35) x 10(11) M-Theta Magnification factors are between 7 and 38 for individual clumps forming two image families along the Einstein ring. We present a decomposition of the foreground and background sources in the WFC3 images, and stellar population synthesis modeling with a range of star-formation histories for Chabrier and Salpeter initial mass functions (IMFs). Only the stellar mass range obtained with the latter agrees well with the lensing mass. This is consistent with the bottom-heavy IMFs of massive high-redshift galaxies expected from detailed studies of the stellar masses and mass profiles of their low-redshift descendants, and from models of turbulent gas fragmentation. This may be the first direct constraint on the IMF in a lens at z = 1.5, which is not a cluster central galaxy.
-
Planck’s dusty GEMSCañameras, R.; Nesvadba, N.; Kneissl, R.; Frye, B.; Gavazzi, R.; Koenig, S.; Le Floc’h, E.; Limousin, M.; Oteo, I.; Scott, D.; et al. (EDP SCIENCES S A, 2017-08-23)We present an analysis of high-resolution ALMA interferometry of CO(4-3) line emission and dust continuum in the "Ruby" (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck's dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4 '' diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M-circle dot yr(-1) kpc(-2), amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few x10(4) M-circle dot pc(-2). The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1-10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.
-
The Apache Point Observatory Galactic Evolution Experiment (APOGEE)Majewski, Steven R.; Schiavon, Ricardo P.; Frinchaboy, P. M.; Prieto, Carlos Allende; Barkhouser, Robert; Bizyaev, Dmitry; Blank, Basil; Brunner, Sophia; Burton, Adam; Carrera, R.; et al. (IOP PUBLISHING LTD, 2017-08-14)The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R similar to 22,500), high signal-to-noise ratio (>100), infrared (1.51-1.70 mu m) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design-hardware, field placement, target selection, operations-and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.