• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Parametrizing Freeform Optical Surfaces for the Optimized Design of Imaging and Illumination Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15549_sip1_m.pdf
    Size:
    1.810Mb
    Format:
    PDF
    Download
    Author
    Williams, Kaitlyn Elizabeth
    Issue Date
    2017
    Keywords
    Cartesian Zernike
    Freeform
    Freeformity
    Illumination
    Imaging
    Advisor
    Koshel, Richard J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Two optical design scenarios—imaging and illumination—were investigated for their use of Cartesian- and polar-based functions to generate freeform optical surfaces. The imaging scenario investigated a single-element, refracting freeform surface that converts an on-axis object field to an off-axis image point. XY polynomials (Cartesian but not orthogonal) and Zernike polynomials (Polar and orthogonal) were the two different function sets used to manipulate the surfaces to achieve the freeform imaging scenarios. The investigation discovered that the results between both function sets did not differ enough to single out a more effective surface type. However, the results did indicate that the Zernike function set typically required fewer coefficients to converge on an optimal imaging solution. The illumination scenario utilized an architectural lighting situation surrounding the Rothko exhibit for Green on Blue at the University of Arizona Museum of Art. The source location was fixed to the light track in the exhibit space and pointed in many different orientations towards the painting. For each orientation, a point cloud of a freeform optical surface was generated such that the painting surface was illuminated with uniform and low-level light. For each of these generated point clouds, a Legendre (Cartesian and orthogonal) and a Zernike (polar and orthogonal) fitting function was applied, and the convergence results were compared. In general, it was found that, after the 20th included fit term, the Legendre function resulted in a smaller RMS fit error than the Zernike function. However, if the light source was pointed near the center of the painting, the Zernike function converged on a solution with fewer fit terms than Legendre. Amidst the imaging scenario, a definition for the extent to which a surface was freeform, or the "freeformity", was given. This definition proved to be an effective solution when the image size was compared for an F/3.33, F/4, F/5, and F/6.67 system for a range of different image focusing heights: the image size trends for each F-number overlapped, indicating a universal freeform term. In addition, a recursive formula for Cartesian Zernike polynomials was defined, which was used to generate an infinite number of Zernike terms using one single recursive expression.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.