• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electron affinity and excited states of methylglyoxal

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2E4982948.pdf
    Size:
    4.659Mb
    Format:
    PDF
    Description:
    FInal Published Version
    Download
    Author
    Dauletyarov, Yerbolat
    Dixon, Andrew R.
    Wallace, Adam A.
    Sanov, Andrei
    Affiliation
    Univ Arizona, Dept Chem & Biochem
    Issue Date
    2017-07-07
    
    Metadata
    Show full item record
    Publisher
    AMER INST PHYSICS
    Citation
    Electron affinity and excited states of methylglyoxal 2017, 147 (1):013934 The Journal of Chemical Physics
    Journal
    The Journal of Chemical Physics
    Rights
    © 2017 Author(s). Published by AIP Publishing.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X(2)A" electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X(1)A'), the lowest triplet state (a(3)A"), and the open-shell singlet state (A(1)A"). The adiabatic electron affinity (EA) of the ground state, EA(X(1)A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a(3)A") = 3.27(2) eV and EA(A(1)A") = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a(3)A" <- X(2)A" and A(1)A" <- X(2)A" photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X(1)A' state, which corresponds to a 60 degrees internal rotation of the methyl group, compared to the anion structure. Accordingly, the X(1)A' <- X(2)A" transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory. Published by AIP Publishing.
    Note
    12 month embargo; published online 11 May 2017.
    ISSN
    0021-9606
    1089-7690
    DOI
    10.1063/1.4982948
    Version
    Final published version
    Sponsors
    U.S. National Science Foundation [CHE-1266152]
    Additional Links
    http://aip.scitation.org/doi/10.1063/1.4982948
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.4982948
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.