Show simple item record

dc.contributor.authorWang, Enkuang D.
dc.contributor.authorBrothers, Timothy J.
dc.date.accessioned2017-06-20T15:56:27Z
dc.date.available2017-06-20T15:56:27Z
dc.date.issued2016-11
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/624249
dc.description.abstractThis paper presents a hardware implementation of a transceiver capable of both orthogonal frequency-division multiplexing (OFDM) and shaped-offset quadrature phase shift keying (SOQPSK) transmissions using a dataflow programming language. Based on the physical layer iNET standard, we introduce a transceiver implementation that utilizes both waveforms with low density parity check (LDPC) forward error correction (FEC) codes. This testbed is intended to test and enable an adaptive algorithm that uses both waveforms as its modulation schemes. As such, it has the ability to dynamically select various modulation parameters and coding rates. The hardware implementations are described and performance utilizations are presented.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.titleOFDM AND SOQPSK TRANSCEIVER HARDWARE IMPLEMENTATION WITH PRELIMINARY RESULTSen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentGeorgia Tech Research Instituteen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-25T13:21:07Z
html.description.abstractThis paper presents a hardware implementation of a transceiver capable of both orthogonal frequency-division multiplexing (OFDM) and shaped-offset quadrature phase shift keying (SOQPSK) transmissions using a dataflow programming language. Based on the physical layer iNET standard, we introduce a transceiver implementation that utilizes both waveforms with low density parity check (LDPC) forward error correction (FEC) codes. This testbed is intended to test and enable an adaptive algorithm that uses both waveforms as its modulation schemes. As such, it has the ability to dynamically select various modulation parameters and coding rates. The hardware implementations are described and performance utilizations are presented.


Files in this item

Thumbnail
Name:
ITC_2016_16-08-01.pdf
Size:
1.120Mb
Format:
PDF
Description:
Conference Proceedings

This item appears in the following Collection(s)

Show simple item record