Advisor
Xin, HaoAffiliation
Univ Arizona, Dept Elect & Comp EngnIssue Date
2016-11
Metadata
Show full item recordRights
Copyright © held by the author; distribution rights International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Dielectric materials have been applied in modifying the antenna radiation pattern, but it is usually limited to single-beam applications. The goal of this paper is to present a novel methodology to control the antenna radiation pattern based on 3D printing technology. 3D printing enables arbitrary dielectric distribution at different locations. As a result, different radiation patterns can be realized by loading an optimized dielectric material with varied permittivity. In this work, we propose a design of a quarter-wavelength monopole antenna surrounded by a low-profile 3D-printed polymer structure with an optimized dielectric distribution. Unlike the conventional omnidirectional pattern of the monopole antenna, singlebeam and multiple-beam patterns are achieved using genetic algorithm (GA) optimization.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079