We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.
20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models
Author
Keller, Kathrin M.Lienert, Sebastian
Bozbiyik, Anil
Stocker, Thomas F.
Churakova (Sidorova), Olga V.
Frank, David C.
Klesse, Stefan
Koven, Charles D.
Leuenberger, Markus
Riley, William J.
Saurer, Matthias
Siegwolf, Rolf
Weigt, Rosemarie B.
Joos, Fortunat
Affiliation
Univ Arizona, Lab Tree Ring ResIssue Date
2017-05-24
Metadata
Show full item recordPublisher
COPERNICUS GESELLSCHAFT MBHCitation
20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models 2017, 14 (10):2641 BiogeosciencesJournal
BiogeosciencesRights
© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Measurements of the stable carbon isotope ratio (delta C-13) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO2 and climate conditions, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO2 partial pressure in the intercellular cavities and the atmosphere (c(i)/c(a)) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earth System Model and the Land Surface Processes and Exchanges (LPX-Bern) dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of delta C-13 measurements on leaves, though modeled C-13 discrimination by C3 trees is smaller in arid regions than measured. A compilation of 76 tree-ring records, mainly from Europe, boreal Asia, and western North America, suggests on average small 20th century changes in isotopic discrimination and in c(i)/c(a) and an increase in iWUE of about 27% since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss by transpiration. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as that revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO2. The results suggest that the downregulation of c(i)/c(a) and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or that there may be problems associated with the implementation of conductance, assimilation, and related adjustment processes on long-term environmental changes.Note
Open access journalISSN
1726-4189Version
Final published versionSponsors
Swiss National Science Foundation (SNF) [200020_147174, 20020_159563, CRSII3_136295]; Marie Curie IIF (EU-ISOTREC) [235122]; Marie Heim-Vogtlin Program [MHV PMPDP2_145507]; Era.Net RUSplus project ELVECS (SNF) [IZRPZ0_164735]; Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231]Additional Links
http://www.biogeosciences.net/14/2641/2017/ae974a485f413a2113503eed53cd6c53
10.5194/bg-14-2641-2017
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.