• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assessment and Improvement of Snow Datasets Over the United States

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15394_sip1_m.pdf
    Size:
    13.25Mb
    Format:
    PDF
    Download
    Author
    Dawson, Nicholas
    Issue Date
    2017
    Keywords
    initialization
    model
    parameterization
    remote sensing
    Snow
    snow water equivalent
    Advisor
    Zeng, Xubin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Improved knowledge of the cryosphere state is paramount for continued model development and for accurate estimates of fresh water supply. This work focuses on evaluation and potential improvements of current snow datasets over the United States. Snow in mountainous terrain is most difficult to quantify due to the slope, aspect, and remote nature of the environment. Due to the difficulty of measuring snow quantities in the mountains, the initial study creates a new method to upscale point measurements to area averages for comparison to initial snow quantities in numerical weather prediction models. The new method is robust and cross validation of the method results in a relatively low mean absolute error of 18% for snow depth (SD). Operational models at the National Centers for Environmental Prediction which use Air Force Weather Agency (AFWA) snow depth data for initialization were found to underestimate snow depth by 77% on average. Larger error is observed in areas that are more mountainous. Additionally, SD data from the Canadian Meteorological Center, which is used for some model evaluations, performed similarly to models initialized with AFWA data. The use of constant snow density for snow water equivalent (SWE) initialization for models which utilize AFWA data exacerbates poor SD performance with dismal SWE estimates. A remedy for the constant snow density utilized in NCEP snow initializations is presented in the next study which creates a new snow density parameterization (SNODEN). SNODEN is evaluated against observations and performance is compared with offline land surface models from the National Land Data Assimilation System (NLDAS) as well as the Snow Data Assimilation System (SNODAS). SNODEN has less error overall and reproduces the temporal evolution of snow density better than all evaluated products. SNODEN is also able to estimate snow density for up to 10 snow layers which may be useful for land surface models as well as conversion of remotely-sensed SD to SWE. Due to the poor performance of previously evaluated snow products, the last study evaluates openly-available remotely-sensed snow datasets to better understand the strengths and weaknesses of current global SWE datasets. A new SWE dataset developed at the University of Arizona is used for evaluation. While the UA SWE data has already been stringently evaluated, confidence is further increased by favorable comparison of UA snow cover, created from UA SWE, with multiple snow cover extent products. Poor performance of remotely-sensed SWE is still evident even in products which combine ground observations with remotely-sensed data. Grid boxes that are predominantly tree covered have a mean absolute difference up to 87% of mean SWE and SWE less than 5 cm is routinely overestimated by 100% or more. Additionally, snow covered area derived from global SWE datasets have mean absolute errors of 20%-154% of mean snow covered area.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Atmospheric Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.