• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Scalable Computational Optical Imaging System Designs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15419_sip1_m.pdf
    Size:
    49.12Mb
    Format:
    PDF
    Download
    Author
    Kerviche, Ronan
    Issue Date
    2017
    Keywords
    compressive
    computational
    design
    imaging
    scalability
    sensing
    Advisor
    Ashok, Amit
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 11-Nov-2017
    Abstract
    Computational imaging and sensing leverages the joint-design of optics, detectors and processing to overcome the performance bottlenecks inherent to the traditional imaging paradigm. This novel imaging and sensing design paradigm essentially allows new trade-offs between the optics, detector and processing components of an imaging system and enables broader operational regimes beyond the reach of conventional imaging architectures, which are constrained by well-known Rayleigh, Strehl and Nyquist rules amongst others. In this dissertation, we focus on scalability aspects of these novel computational imaging architectures, their design and implementation, which have far-reaching impacts on the potential and feasibility of realizing task-specific performance gains relative to traditional imager designs. For the extended depth of field (EDoF) computational imager design, which employs a customized phase mask to achieve defocus immunity, we propose a joint-optimization framework to simultaneously optimize the parameters of the optical phase mask and the processing algorithm, with the system design goal of minimizing the noise and artifacts in the final processed image. Using an experimental prototype, we demonstrate that our optimized system design achieves higher fidelity output compared to other static designs from the literature, such as the Cubic and Trefoil phase masks. While traditional imagers rely on an isomorphic mapping between the scene and the optical measurements to form images, they do not exploit the inherent compressibility of natural images and thus are subject to Nyquist sampling. Compressive sensing exploits the inherent redundancy of natural images, basis of image compression algorithms like JPEG/JPEG2000, to make linear projection measurements with far fewer samples than Nyquist for the image forming task. Here, we present a block wise compressive imaging architecture which is scalable to high space-bandwidth products (i.e. large FOV and high resolution applications) and employs a parallelizable and non-iterative piecewise linear reconstruction algorithm capable of operating in real-time. Our compressive imager based on this scalable architecture design is not limited to the imaging task and can also be used for automatic target recognition (ATR) without an intermediate image reconstruction. To maximize the detection and classification performance of this compressive ATR sensor, we have developed a scalable statistical model of natural scenes, which enables the optimization of the compressive sensor projections with the Cauchy-Schwarz mutual information metric. We demonstrate the superior performance of this compressive ATR system using simulation and experiment. Finally, we investigate the fundamental resolution limit of imaging via the canonical incoherent quasi-monochromatic two point-sources separation problem. We extend recent results in the literature demonstrating, with Fisher information and estimator mean square error analysis, that a passive optical mode-sorting architecture with only two measurements can outperform traditional intensity-based imagers employing an ideal focal plane array in the sub-Rayleigh range, thus overcoming the Rayleigh resolution limit.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.