• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Applications of Non-Traditional Measurements for Computational Imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15435_sip1_m.pdf
    Size:
    5.608Mb
    Format:
    PDF
    Download
    Author
    Treeaporn, Vicha
    Issue Date
    2017
    Keywords
    Compressive Sensing
    Computational Imaging
    Advisor
    Neifeld, Mark A.
    Committee Chair
    Neifeld, Mark A.
    Ashok, Amit
    Thamvichai, Ratchaneekorn
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Imaging systems play an important role in many diverse applications. Requirements for these applications, however, can lead to complex or sub-optimal designs. Traditionally, imaging systems are designed to yield a visually pleasing representation, or "pretty picture", of the scene or object. Often this is because a human operator is viewing the acquired image to perform a specific task. With digital computers increasingly being used for automation, a large number of algorithms have been designed to accept as input a pretty picture. This isomorphic representation however is neither necessary nor optimal for tasks such as data compression, transmission, pattern recognition or classification. This disconnect between optical measurement and post processing for the final system outcome has motivated an interest in computational imaging (CI). In a CI system the optical sub-system and post-processing sub-system is jointly designed to optimize system performance for a specific task. In these hybrid imagers, the measured image may no longer be a pretty picture but rather an intermediate non-traditional measurement. In this work, applications of non-traditional measurements are considered for computational imaging. Two systems for an image reconstruction task are studied and one system for a detection task is investigated. First, a CI system to extend the field of view is analyzed and an experimental prototype demonstrated. This prototype validates the simulation study and is designed to yield a 3x field of view improvement relative to a conventional imager. Second, a CI system to acquire time-varying natural scenes, i.e. video, is developed. A candidate system using 8x8x16 spatiotemporal blocks yields about 292x compression compared to a conventional imager. Candidate electro-optical architectures, including charge-domain processing, to implement this approach are also discussed. Lastly, a CI system with x-ray pencil beam illumination is investigated for a detection task where system performance is quantified using an information-theoretic metric.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.