We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions
Name:
Stiepen_et_al-2017-Journal_of_ ...
Size:
1.944Mb
Format:
PDF
Description:
FInal Published Version
Author
Stiepen, A.Jain, Sonal K.
Schneider, N. M.
Deighan, J. I.
González-Galindo, F.
Gérard, J.-C.
Milby, Z.
Stevens, M. H.
Bougher, S.
Evans, J. S.
Stewart, A. I. F.
Chaffin, M. S.
Crismani, M.
McClintock, W. E.
Clarke, J. T.
Holsclaw, G. M.
Montmessin, F.
Lefèvre, F.
Forget, F.
Lo, D. Y.
Hubert, B.
Jakosky, B. M.
Affiliation
Univ Arizona, Lunar & Planetary LabIssue Date
2017-05
Metadata
Show full item recordPublisher
AMER GEOPHYSICAL UNIONCitation
Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions 2017, 122 (5):5782 Journal of Geophysical Research: Space PhysicsRights
© 2017. American Geophysical Union. All Rights Reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We report results from a study of nitric oxide nightglow over the northern hemisphere of Mars during winter, the southern hemisphere during fall equinox, and equatorial latitudes during summer in the northern hemisphere based on observations of the and bands between 190 and 270nm by the Imaging UltraViolet Spectrograph (IUVS) on the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft. The emission reveals recombination of N and O atoms dissociated on the dayside of Mars and transported to the nightside. We characterize the brightness (from 0.2 to 30kR) and altitude (from 40 to 115km) of the NO nightglow layer, as well as its topside scale height (mean of 11km). We show the possible impact of atmospheric waves forcing longitudinal variability, associated with an increased brightness by a factor of 3 in the 140-200 degrees longitude region in the northern hemisphere winter and in the -102 degrees to -48 degrees longitude region at summer. Such impact to the NO nightglow at Mars was not seen before. Quantitative comparison with calculations of the LMD-MGCM (Laboratoire de Meteorologie Dynamique-Mars Global Climate Model) suggests that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation and also indicates large discrepancies (up to a factor 50 fainter in the model) in northern winter at low to middle latitudes. This suggests that the predicted transport is too efficient toward the night winter pole in the thermosphere by approximate to 20 degrees latitude north.Note
6 month embargo; First published: 31 May 2017ISSN
21699380Version
Final published versionSponsors
Fund for Scientific Research (F.R.S.-FNRS); NASA; University of Colorado; NASA's Goddard Space Flight Center; NASA MAVEN Participating Scientist program; SCOOP/BRAIN program of the Belgian Federal Government; European Union [UPWARDS-633127]Additional Links
http://doi.wiley.com/10.1002/2016JA023523ae974a485f413a2113503eed53cd6c53
10.1002/2016JA023523