Improving the Xin'anjiang hydrological model based on mass–energy balance
Affiliation
Univ Arizona, Dept Hydrol & Atmospher SciUniv Arizona, Biosphere 2
Issue Date
2017-07-07
Metadata
Show full item recordPublisher
COPERNICUS GESELLSCHAFT MBHCitation
Improving the Xin'anjiang hydrological model based on mass–energy balance 2017, 21 (7):3359 Hydrology and Earth System SciencesRights
© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ) model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET) and soil moisture content (SMC) in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET), which is comparable to land surface temperature (LST). The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS)-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.Note
Open Access Journal.ISSN
1607-7938Version
Final published versionSponsors
National Natural Science Foundation of China [51420105014, 51609175, 51409090]; Special Scientific Research Fund of Ministry of Water Resources' Public Welfare Profession of China [201401034]; ESA-MOST Dragon 3 program [10664]; Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering [2015490211]Additional Links
https://www.hydrol-earth-syst-sci.net/21/3359/2017/ae974a485f413a2113503eed53cd6c53
10.5194/hess-21-3359-2017
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.