• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Navigational Neural Coding and De-noising

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15564_sip1_m.pdf
    Size:
    8.165Mb
    Format:
    PDF
    Download
    Author
    Schwartz, David
    Issue Date
    2017
    Keywords
    coding
    de-noising
    grid
    information
    navigation
    place
    Advisor
    Koyluoglu, O. Ozan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 30-Jun-2018
    Abstract
    The work discussed in this thesis is the product of investigation on information and coding theoretic properties of colluding populations of navigationally relevant mammalian neurons. For brevity and completeness, that work is presented chronologically in the order in which it was investigated. This thesis details coding theoretic properties of (and develop a model for communication between) colluding populations of spatially responsive neurons in the hippocampus (HC) and medial entorhinal cortex (MEC) through a hypothetical layer of interneurons (each of which posesses exclusively excitatory or inhibitory synapses). This work presents analysis of the changes in network structure induced by an anti-Hebbian learning process and translate these analyses into biologically testable hypotheses. Further, it is demonstrated that for appropriately parameterized codes (i.e. populations of grid and place cells in MEC and HC, respectively), this network is able to learn the code and correct for errors introduced by neural noise, potentially explaining the results of a correlational study: Place cell variability sharply decreases at a time that coincides with the maturation of the grid cell network in developing mice. Further, this work predicts that disruption of the grid cell network (e.g. via optogenetic inactivation and lesioning) should increase the variability of place cell firing, and impair decoding from these place cells' activities. Continuing down this avenue, we consider how the inclusion of a population of the somewhat controversial time cells (purportedly residing in HC and MEC) impacts de-noising network structure, coding properties of the population of populations of all three classes of navigatory neuron, and denoisability. These results are translated to testable neurobiological predictions. Additionally, to ensure realistic stimulus statistics, locations and times are taken from real rat paths recorded from navigating rats in the Computational and Experimental Neuroscience Laboratory at the University of Arizona. Interestingly, while time cells exhibit some of the coding and information theoretic trends described in chapter 4, in certain cases, they admit surprising connectivity trends. Most surprisingly, after including time cells in this framework it was discovered that some classes of neural noise appear to improve decoding accuracy over the entire path while simultaneously impairing accuracy of decoding position and time independently.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.