Interplay of magnon and electron currents in magnetic heterostructure
Name:
PhysRevB.96.024449.pdf
Size:
252.0Kb
Format:
PDF
Description:
FInal Published Version
Publisher
AMER PHYSICAL SOCCitation
Interplay of magnon and electron currents in magnetic heterostructure 2017, 96 (2) Physical Review BJournal
Physical Review BRights
© 2017 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In magnetic materials, both electrons and magnons are capable of carrying angular momentum currents. An external electric field can efficiently drive a charge and spin current of electrons, but it is unable to directly produce a chargeless magnon current. The generation of the magnon current is conventionally achieved via thermal gradients or the electron spin injection from interfaces. Here, we investigate the magnon current induced by the momentum and angular momentum transfer from conduction electrons in magnetic layered systems. By using the generic exchange interaction between electrons andmagnons, we derive the coupled diffusion equations for electron spins and magnons and we find (a) the ratio between the magnon current and the electric charge current is substantial at room temperature for conventional conducting ferromagnets, (b) the spin diffusion length of electrons is significantly modified by the presence of the nonequilibrium magnon density, and (c) the giant magnetoresistance of the magnetic multilayers for the current perpendicular to the plane of layers is reduced compared to the prior theory without taking into account the magnon current.ISSN
2469-99502469-9969
Version
Final published versionSponsors
National Science Foundation [ECCS-1708180]Additional Links
http://link.aps.org/doi/10.1103/PhysRevB.96.024449ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevB.96.024449