• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Reinforcement Learning to Personalize Dosing Strategies in a Simulated Cancer Trial with High Dimensional Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15579_sip1_m.pdf
    Size:
    501.4Kb
    Format:
    PDF
    Download
    Author
    Humphrey, Kyle
    Issue Date
    2017
    Advisor
    Zhou, Jin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In a simulation of an advanced generic cancer trial, I use Q-learning, a reinforcement learning algorithm, to develop dynamic treatment regimes for a continuous treatment, the dose of a single drug. Selected dynamic treatment regimes are tailored to time-varying patient characteristics and to patient subgroups with differential treatment effects. This approach allows estimation of optimal dynamic treatment regimes without a model of the disease process or a priori hypotheses about subgroup membership. Using observed patient characteristics and outcomes from the simulated trial, I estimate Q-functions based on 1) a single regression tree grown by the Classification And Regression Trees (CART) method, 2) random forests, and 3) a slightly modified version of Multivariate Adaptive Regression Splines (MARS). I then compare the survival times of an independent group of simulated patients under treatment regimes estimated using Q-learning with each of the three methods, 10 constant dose regimes, and the best possible treatment regime chosen using a brute force search over all possible treatment regimes with complete knowledge of disease processes and their effects on survival. I also make these comparisons in scenarios with and without spurious high dimensional covariates and with and without patient subgroups with differential treatment effects. Treatment regimes estimated using Q-learning with MARS and random forests greatly increased survival times when compared to the constant dose regimes, but were still considerably lower than the best possible dose regime. Q-learning with a single regression tree did not outperform the constant dose regimes. These results hold across high dimensional and subgroup scenarios. While the MARS method employed produces much more interpretable models than random forests, and therefore has more promise for patient subgroup identification, I show that it is also more sensitive to variations in training data.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Biostatistics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.