• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Familial Amyotrophic Lateral Sclerosis with a focus on C9orf72 Hexanucleotide GGGGCC Repeat Expansion Associated ALS with Frontotemporal Dementia

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15637_sip1_m.pdf
    Size:
    2.530Mb
    Format:
    PDF
    Download
    Author
    Workinger, Paul M.
    Issue Date
    2017
    Keywords
    ALS
    autophagy
    C9orf72
    intracellular transport
    mitochondrial dysfunction
    neuronal death
    Advisor
    Elliott, David A.
    Wilson, Jean M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Amyotrophic Lateral Sclerosis (ALS) is a rare and fatal neurodegenerative disorder resulting in the loss of motor neurons from the spinal cord and frontal cortex. The patterns of neurodegeneration, affected regions, age of onset, and time course of disease progression are all highly variable between and within variants of the disease. Familial ALS (fALS), inherited versions of ALS due to genetic changes, accounts for between 5-20% of all ALS cases, while the rest are sporadic, with either no causative mutation identified or no familial history of ALS. Recently, the discovery of C9orf72 hexanucleotide repeat expansions have been identified as one of the most common causes of familial ALS, with some patients presenting with dual phenotypes of ALS and frontotemporal dementia, leading to new hypotheses about the nature of neurodegenerative diseases. Despite the continued discovery of new ALS causative genes, little is known about the pathogenesis of the disease. While almost all variants include the presence of intracellular protein inclusions, the site of the protein plaques and involved proteins varies between genetic and phenotypic variants of this disease. Due to the lack of clear pathogenic mechanisms, several hypotheses have been developed to explain the process of neurodegeneration. Autophagy, the process of self-eating, leading to destruction of damaged or excess proteins and organelles, has been implicated as being altered in ALS. Multiple variants have demonstrated altered mitochondrial morphology and cellular energetic dynamics, which could explain previous observations that implicate the process of apoptosis in cellular death. Many of the involved proteins in ALS have functional roles for intracellular, nucleocytoplasmic, and axonal transport of various proteins or RNA. These three competing hypotheses are currently the most prominent hypotheses in the pathogenesis of ALS, and have largely been considered as separate and competing in past research. Is there a chance that the true pathogenesis leading to neuronal destruction via apoptosis involve all three hypotheses? Altered protein and RNA transport dynamics could lead to changes in cellular stress responses or overload autophagy pathways, leading to exacerbated cellular stress responses, leading to alterations in mitochondrial morphology and eventually cell death via apoptosis.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Cellular and Molecular Medicine
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.