• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Secure Geometric Search on Encrypted Spatial Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15636_sip1_m.pdf
    Size:
    1.884Mb
    Format:
    PDF
    Download
    Author
    Wang, Boyang
    Issue Date
    2017
    Keywords
    Encrypted Data
    Geometric Queries
    Spatial Data
    Advisor
    Li, Ming
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Spatial data (e.g., points) have extensive applications in practice, such as spatial databases, Location-Based Services, spatial computing, social analyses, computational geometry, graph design, medical imaging, etc. Geometric queries, such as geometric range queries (i.e., finding points inside a geometric range) and nearest neighbor queries (i.e., finding the closest point to a given point), are fundamental primitives to analyze and retrieve information over spatial data. For example, a medical researcher can query a spatial dataset to collect information about patients in a certain geometric area to predict whether there will be a dangerous outbreak of a particular disease (e.g., Ebola or Zika). With the dramatic increase on the scale and size of data, many companies and organizations are outsourcing significant amounts of data, including significant amounts of spatial data, to public cloud data services in order to minimize data storage and query processing costs. For instance, major companies and organizations, such as Yelp, Foursquare and NASA, are using Amazon Web Services as their public cloud data services, which can save billions of dollars per year for those companies and organizations. However, due to the existence of attackers (e.g., a curious administrator or a hacker) on remote servers, users are worried about the leakage of their private data while storing and querying those data on public clouds. Searchable Encryption (SE) is an innovative technique to protect the data privacy of users on public clouds without losing search functionalities on the server side. Specifically, a user can encrypt its data with SE before outsourcing data to a public server, and this public server is able to search encrypted data without decryption. Many SE schemes have been proposed to support simple queries, such as keyword search. Unfortunately, how to efficiently and securely support geometric queries over encrypted spatial data remains open. In this dissertation, to protect the privacy of spatial data in public clouds while still maintaining search functions without decryption, we propose a set of new SE solutions to support geometric queries, including geometric range queries and nearest neighbor queries, over encrypted spatial data. The major contributions of this dissertation focus on two aspects. First, we enrich search functionalities by designing new solutions to carry out secure fundamental geometric search queries, which were not supported in previous works. Second, we minimize the performance gap between theory and practice by building novel schemes to perform geometric queries with highly efficient search time and updates over large-scale encrypted spatial data. Specifically, we first design a scheme supporting circular range queries (i.e., retrieving points inside a circle) over encrypted spatial data. Instead of directly evaluating compute-then-compare operations, which are inefficient over encrypted data, we use a set of concentric circles to represent a circular range query, and then verify whether a data point is on any of those concentric circles by securely evaluating inner products over encrypted data. Next, to enrich search functionalities, we propose a new scheme, which can support arbitrary geometric range queries, such as circles, triangles and polygons in general, over encrypted spatial data. By leveraging the properties of Bloom filters, we convert a geometric range search problem to a membership testing problem, which can be securely evaluated with inner products. Moving a step forward, we also build another new scheme, which not only supports arbitrary geometric range queries and sub-linear search time but also enables highly efficient updates. Finally, we address the problem of secure nearest neighbor search on encrypted large-scale datasets. Specifically, we modify the algorithm of nearest neighbor search in advanced tree structures (e.g., R-trees) by simplifying operations, where evaluating comparisons alone on encrypted data is sufficient to efficiently and correctly find nearest neighbors over datasets with millions of tuples.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.