• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assessing Human Medial Olivocochlear Reflex Function with Complementary Pre-Neural and Neural Assays

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15650_sip1_m.pdf
    Size:
    2.654Mb
    Format:
    PDF
    Download
    Author
    Smith, Spencer Benjamin
    Issue Date
    2017
    Advisor
    Cone, Barbara K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The auditory nervous system contains an extensive and distributed network of efferent pathways connecting auditory cortices to cochleae. At the most caudal level of the efferent auditory system, cochlear outer hair cells (OHCs) receive direct innervation from the auditory brainstem via the medial olivocochlear (MOC) bundle. Through the MOC bundle, the brainstem modulates cochlear amplifier gain – an effect termed the MOC reflex. One putative role of the MOC reflex is improving the signal-to-noise ratio by reducing cochlear gain for noise (i.e., "unmasking"). The human MOC reflex has been studied using pre-neural assays of OHC function, such as otoacoustic emissions. A limitation of this approach is that it is insensitive to subsequent “downstream” MOC reflex effects on the neural ensembles that mediate hearing. To elucidate the functional role of the MOC reflex, it is imperative to understand relationships between the pre-neural OAE assays of MOC reflex function and their downstream neural complements: compound nerve action potentials and auditory brainstem responses. The specific aims of this dissertation were to 1) examine predictive relationships between complementary pre-neural and neural assays of MOC reflex function, and 2) test the hypothesis that the human MOC reflex is advantageous in speech-in-noise processing. Three experiments were undertaken to address these aims. In the first experiment, click-evoked otoacoustic emissions and click- and chirp- evoked auditory nerve compound action potentials were measured with and without activation of the MOC reflex using contralateral noise. We hypothesized that MOC reflex amplitude inhibition of compound action potentials would be larger than otoacoustic emission amplitude inhibition and that compound action potential inhibition would be predicted by otoacoustic emissions inhibition. In the second experiment, distortion product otoacoustic emissions and distortion product frequency following responses were measured with and without activation of the MOC reflex using contralateral noise. We hypothesized than MOC reflex inhibition of distortion product frequency following responses would be larger than distortion product otoacoustic emissions and that distortion product frequency following response inhibition would be predicted by distortion product otoacoustic emission inhibition. In the third experiment, we measured MOC reflex strength using otoacoustic emissions as well as brainstem speech-in-noise processing with and without activation of the MOC reflex. We hypothesized that otoacoustic emission inhibition would predict brainstem speech-in-noise unmasking. The results of Experiment 1 suggested that compound action potential amplitude inhibition was larger than otoacoustic emission amplitude inhibition when results were reported on the same scale. Further, chirp-evoked compound action potential inhibition was larger than click-evoked compound action potential inhibition, suggesting that chirps may be a better tool for measuring MOC reflex inhibition of auditory nerve responses. The results of Experiment 2 revealed that distortion product frequency following response inhibition was largest for the component measured at 2f1-f2 than for f1 or f2. Further, distortion product otoacoustic emission inhibition was mildly predictive of distortion product frequency following response inhibition at 2f1-f2 and f2. The results of Experiment 3 revealed that otoacoustic emission inhibition was not predictive of speech-in-noise "unmasking" at the level of the brainstem. Taken together, the experiments suggest that pre-neural inhibition measurements likely underestimate MOC reflex strength and that neural assays may be more beneficial in understanding the functional significance of the MOC reflex in humans.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Speech, Language, & Hearing Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.