• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Invading a Structured Population: A Bifurcation Approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15696_sip1_m.pdf
    Size:
    3.947Mb
    Format:
    PDF
    Download
    Author
    Meissen, Emily Philomena
    Issue Date
    2017
    Keywords
    bifurcation
    difference equations
    dynamical systems
    invasion
    nonlinear matrix models
    population dynamics
    Advisor
    Cushing, Jim M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Matrix population models are discrete in both time and state-space, where a matrix with density-dependent entries is used to project a population vector of a stage-structured population from one time to the next. Such models are useful for modeling populations with discrete categorizations (e.g. developmental cycles, communities of multiple species, differing sizes, etc.). We present a general matrix model of two interacting populations where one (the resident) has a stable cycle, and we analyze when the other population (the invader) can successfully invade. Specifically, we study the local bifurcations of coexistence cycles as the resident cycle destabilizes, where a cycle of length 1 corresponds to an equilibrium. We make no assumptions on the types of interactions between the populations or on the population structure of the resident; we consider when the invader's projection matrix is primitive or imprimitive and 2x2. The simplest biological scenarios for such structures are an iteroparous invader and a two-stage semelparous invader. When the invader has a primitive projection matrix, coexistence cycles (of the same period as the resident cycle) bifurcate from the resident-cycle. When the invader has an imprimitive two-stage projection matrix, two types of coexistence cycles bifurcate from the resident-cycle: cycles of the same period and cycles of double the period. In both the primitive and imprimitive cases, we provide diagnostic quantities to determine the direction of bifurcation and the stability of the bifurcating cycles. Because we only perform a local stability analysis, the only successful invasion provided by our results is through stable coexistence cycles. As we show in some simple examples, however, the invader may persist when the coexistence cycles are unstable through competitive exclusion where the branch of bifurcating cycles connects to a branch of invader attractors and creates a multi-attractor scenario known as a strong Allee effect.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.