• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An Approach to Automatic and Human Speech Recognition Using Ear-Recorded Speech

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15716_sip1_m.pdf
    Size:
    42.79Mb
    Format:
    PDF
    Download
    Author
    Johnston, Samuel John Charles
    Issue Date
    2017
    Keywords
    Automatic Speech Recognition
    Human Speech Recognition
    Speech in Noise
    Advisor
    Hammond, Michael
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 28-Aug-2018
    Abstract
    Speech in a noisy background presents a challenge for the recognition of that speech both by human listeners and by computers tasked with understanding human speech (automatic speech recognition; ASR). Years of research have resulted in many solutions, though none so far have completely solved the problem. Current solutions generally require some form of estimation of the noise, in order to remove it from the signal. The limitation is that noise can be highly unpredictable and highly variable, both in form and loudness. The present report proposes a method of recording a speech signal in a noisy environment that largely prevents noise from reaching the recording microphone. This method utilizes the human skull as a noise-attenuation device by placing the microphone in the ear canal. For further noise dampening, a pair of noise-reduction earmuffs are used over the speakers' ears. A corpus of speech was recorded with a microphone in the ear canal, while also simultaneously recording speech at the mouth. Noise was emitted from a loudspeaker in the background. Following the data collection, the speech recorded at the ear was analyzed. A substantial noise-reduction benefit was found over mouth-recorded speech. However, this speech was missing much high-frequency information. With minor processing, mid-range frequencies were amplified, increasing the intelligibility of the speech. A human perception task was conducted using both the ear-recorded and mouth-recorded speech. Participants in this experiment were significantly more likely to understand ear-recorded speech over the noisy, mouth-recorded speech. Yet, participants found mouth-recorded speech with no noise the easiest to understand. These recordings were also used with an ASR system. Since the ear-recorded speech is missing much high-frequency information, it did not recognize the ear-recorded speech readily. However, when an acoustic model was trained low-pass filtered speech, performance improved. These experiments demonstrated that humans, and likely an ASR system, with additional training, would be able to more easily recognize ear-recorded speech than speech in noise. Further speech processing and training may be able to improve the signal's intelligibility for both human and automatic speech recognition.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Linguistics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.