• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Kinematics of Massive Stars and Circumstellar Material in the Carina Nebula

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15755_sip1_m.pdf
    Size:
    4.674Mb
    Format:
    PDF
    Download
    Author
    Kiminki, Megan Michelle
    Issue Date
    2017
    Advisor
    Smith, Nathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation presents the results of three related projects, each focusing on an aspect of the massive stars in the Carina Nebula and how they impact their surroundings. First, I use the proper motions of dense gas ejected by η Carinae to show that this luminous blue variable (LBV) has experienced major eruptions not just once but three times in the past millennium. The three eruptions show distinctly different symmetries: the thirteenth-century event was essentially one-sided, while the sixteenth-century event and the nineteenth-century Great Eruption were bipolar but not aligned with each other. These observations provide new constraints to theoretical models of η Car and LBVs. In the second project, I constrain the proper motions of five other massive stars in the Carina Nebula. Each of these five has a stellar wind bow shock, but I find that none are runaway stars. In two cases, the bow shocks, which face a cluster that is driving large-scale flows of ionized gas, point at right angles to the motion of their stars. In the other three cases, both feedback-driven gas flows and stellar motion may be factors in setting bow shock orientation. The third section of this dissertation is a survey of the radial velocities of the Carina Nebula’s full O-star population, combining new spectroscopy with a thorough review of values from the literature. The radial velocity distribution supports a common distance to the region’s various clusters and subclusters. Comparison to molecular gas velocities shows that feedback from the Trumpler 16 cluster (home to η Car), has accelerated a dense cloud toward us and possibly triggered additional massive-star formation. Comparison to ionized gas velocities shows that the feedback-driven expansion of the H II region is not spherical and is likely constrained by an unseen dense cloud on the far side.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.