Show simple item record

dc.contributor.advisorKieu, Khanhen
dc.contributor.authorNoble, Jeffrey Scott
dc.creatorNoble, Jeffrey Scotten
dc.date.accessioned2017-09-29T17:54:58Z
dc.date.available2017-09-29T17:54:58Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10150/625701
dc.description.abstractThis master thesis presents an experimental design of a laser gyroscope based on a stabilized fiber optical parametric oscillator frequency comb and the results of testing of the proposed design. Before going into the experimental details, a background for different types of gyroscopes is discussed. This new laser gyroscope design is made up of only polarization maintaining (PM) fiber and PM fiber components. By using only fiber and fiber components, we were able to minimize size, weight, and alignment issues that are typical in bulk optical designs for OPO's and gyroscopes. The fiber-based OPO produces counter propagating ultrafast pulses that overlap only twice in the cavity, resulting in a beatnote signal when combined outside of the laser cavity. A mode-locked laser is used as a pump source so the lock-in effect (or deadband region) is avoided for the experiment. The drift of this beatnote signal represents the rotation sensitivity of the experimental setup. Issues seen in past iterations, such as stability of mode-locked pump source and beatnote drift overtime due to environmental variables, have been reduced in this experiment. This has been done by comprising the entire pump source of PM components, and by placing the entire setup in an insulating box to minimize acoustic and temperature fluctuations. By creating a frequency comb and locking the laser gyroscope to an optical clock, this experiment can be used for very precise rotation sensing in comparison to other gyro designs currently available.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectBidirectionalen
dc.subjectGyroscopeen
dc.subjectMode-Locked Laseren
dc.subjectOptical Parametric Oscillatoren
dc.titleLaser Gyroscope based on Synchronously Pumped Bidirectional Fiber Optical Parametric Oscillatoren_US
dc.typetexten
dc.typeElectronic Thesisen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.levelmastersen
dc.contributor.committeememberKieu, Khanhen
dc.contributor.committeememberNorwood, Roberten
dc.contributor.committeememberCvijetic, Miloraden
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.nameM.S.en
refterms.dateFOA2018-09-11T23:21:40Z
html.description.abstractThis master thesis presents an experimental design of a laser gyroscope based on a stabilized fiber optical parametric oscillator frequency comb and the results of testing of the proposed design. Before going into the experimental details, a background for different types of gyroscopes is discussed. This new laser gyroscope design is made up of only polarization maintaining (PM) fiber and PM fiber components. By using only fiber and fiber components, we were able to minimize size, weight, and alignment issues that are typical in bulk optical designs for OPO's and gyroscopes. The fiber-based OPO produces counter propagating ultrafast pulses that overlap only twice in the cavity, resulting in a beatnote signal when combined outside of the laser cavity. A mode-locked laser is used as a pump source so the lock-in effect (or deadband region) is avoided for the experiment. The drift of this beatnote signal represents the rotation sensitivity of the experimental setup. Issues seen in past iterations, such as stability of mode-locked pump source and beatnote drift overtime due to environmental variables, have been reduced in this experiment. This has been done by comprising the entire pump source of PM components, and by placing the entire setup in an insulating box to minimize acoustic and temperature fluctuations. By creating a frequency comb and locking the laser gyroscope to an optical clock, this experiment can be used for very precise rotation sensing in comparison to other gyro designs currently available.


Files in this item

Thumbnail
Name:
azu_etd_15793_sip1_m.pdf
Size:
2.211Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record