• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Genetic Requirements for Building a Brain of Sufficient Size: Insights from Mendelian Congenital Microcephaly Disorders

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15835_sip1_m.pdf
    Size:
    12.13Mb
    Format:
    PDF
    Download
    Author
    Brown, Cecilia
    Issue Date
    2017
    Keywords
    Congenital Microcephaly
    Cornelia de Lange Syndrome
    MCPH
    Primary Microcephaly
    Seckel Syndrome
    Advisor
    Restifo, Linda L.
    Committee Chair
    Fuglevand, Andrew
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 24-Feb-2018
    Abstract
    Congenital microcephaly (conMiC) is a manifestation of severely disrupted prenatal brain development, caused by genetic defects, toxins, severe maternal malnutrition, or infection. The Zika virus outbreak and the devastating impact of Zika infection on the fetal brain have focused much attention on the cellular and molecular pathophysiology of conMiC. Mendelian conMiC disorders offer a unique opportunity for understanding gene and protein networks that direct cellular processes essential for prenatal brain development. Using OMIM and literature searches, I analyzed 68 conMiC disorders and their 65 corresponding genes. ConMiC-disorder phenotypes were characterized by analyzing the co-occurrence of ID, retinal abnormalities, seizures, and short stature. Short stature co-occurred with 70% of conMiC disorders, while seizures and retinopathy co-occurred with 68% and 37%, respectively. In 53% of conMiC disorders, seizures and short stature overlapped, while all features overlapped in 22% of conMiC disorders; only 7% of conMiC disorders lacked one of these co-occurring features. This shows conMiC genes are rarely specialized for brain growth, with generalized functions in overall body growth, retinal development, and/or regulation of neural activity. ConMiC-gene transcript accumulation in the brain is typically greatest during the prenatal period, and then declines postnatally, suggesting active transcriptional repression. Nonetheless, in neurons and glia of the adult brain, 44 conMiC genes had confirmed persistent protein accumulation. Experimental evidence indicates transcription in neural progenitor cells (NPCs) for at least 82% of conMiC genes. The spatiotemporal expression patterns of conMiC genes tend to align well with their biological functions and corresponding mutant phenotypes. Nearly 60% of conMiC gene products have functions in the cell cycle and/or DNA repair. Most conMiC disorders are caused by recessive, loss-of-function mutations. There are direct binding and regulatory interactions amongst many conMiC genes, which interact in larger networks and shared pathways. Depletion of single conMiC gene products can affect the transcript and/or protein levels of other conMiC gene products, which could have a “domino effect”, and disrupt entire networks important for brain development. Further evidence for this model is that 22 conMiC genes are consistently dysregulated in Zika-infected developing human brain tissue. Due to the complexity of conMiC genes and their interactions, there are many unique challenges to developing treatments for conMiC, particularly conMiC caused by maternal Zika-virus infection. However, insights to treatment strategies could be gained by using human genetics to find potential modifiers, screening for drugs that can normalize disrupted cell cycle and DNA-repair processes, or can stabilize protein complexes that are disrupted due to a conMiC gene mutation.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Neuroscience
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.