• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    P -wave π π scattering and the ρ resonance from lattice QCD

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhysRevD.96.034525.pdf
    Size:
    1.636Mb
    Format:
    PDF
    Description:
    FInal Published Version
    Download
    Author
    Alexandrou, Constantia
    Leskovec, Luka
    Meinel, Stefan
    Negele, John
    Paul, Srijit
    Petschlies, Marcus
    Pochinsky, Andrew
    Rendon, Gumaro
    Syritsyn, Sergey
    Affiliation
    Univ Arizona, Dept Phys
    Issue Date
    2017-08-31
    
    Metadata
    Show full item record
    Publisher
    AMER PHYSICAL SOC
    Citation
    P -wave π π scattering and the ρ resonance from lattice QCD 2017, 96 (3) Physical Review D
    Journal
    Physical Review D
    Rights
    © 2017 American Physical Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    We calculate the parameters describing elastic I = 1, P-wave pp scattering using lattice QCD with 2 + 1 flavors of clover fermions. Our calculation is performed with a pion mass of m(pi) approximate to 320 MeV and a lattice size of L approximate to 3.6 fm. We construct the two-point correlation matrices with both quark-antiquark and two-hadron interpolating fields using a combination of smeared forward, sequential and stochastic propagators. The spectra in all relevant irreducible representations for total momenta vertical bar(P) over right arrow vertical bar <= root 32 pi/L are extracted with two alternative methods: a variational analysis as well as multiexponential matrix fits. We perform an analysis using Luscher's formalism for the energies below the inelastic thresholds, and investigate several phase shift models, including possible nonresonant contributions. We find that our data are well described by the minimal Breit-Wigner form, with no statistically significant nonresonant component. In determining the rho resonance mass and coupling we compare two different approaches: fitting the individually extracted phase shifts versus fitting the t-matrix model directly to the energy spectrum. We find that both methods give consistent results, and at a pion mass of am(pi) = 0.18295(36)(stat) obtain g(rho pi pi) = 5.69(13)(stat)(16)(sys), am(rho) = 0.4609(16)(stat)(14)(sys), and am(rho)/am(N) = 0.7476(38)(stat)(23)(sys), where the first uncertainty is statistical and the second is the systematic uncertainty due to the choice of fit ranges.
    ISSN
    2470-0010
    2470-0029
    DOI
    10.1103/PhysRevD.96.034525
    Version
    Final published version
    Sponsors
    National Science Foundation [ACI-1053575, PHY-1520996]; RHIC Physics Fellow Program of the RIKEN BNL Research Center; U.S. Department of Energy Office of Nuclear Physics [DE-SC-0011090, DE-FC02-06ER41444]; European Union [642069]; HPC-LEAP joint doctorate program; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
    Additional Links
    https://link.aps.org/doi/10.1103/PhysRevD.96.034525
    ae974a485f413a2113503eed53cd6c53
    10.1103/PhysRevD.96.034525
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.