Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ 18O–H2O and δ 2H–H2O values by cavity ring-down spectroscopy
Affiliation
Univ Arizona, Dept Ecol & Evolutionary BiolIssue Date
2017-08-24
Metadata
Show full item recordPublisher
COPERNICUS GESELLSCHAFT MBHCitation
Effects of variation in background mixing ratios of N<sub>2</sub>, O<sub>2</sub>, and Ar on the measurement of <i>δ</i><sup>18</sup>O–H<sub>2</sub>O and <i>δ</i><sup>2</sup>H–H<sub>2</sub>O values by cavity ring-down spectroscopy 2017, 10 (8):3073 Atmospheric Measurement TechniquesRights
© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.Note
Open access journal.ISSN
1867-8548Version
Final published versionSponsors
National Science Foundation through the Macrosystem Biology Program award [1065790]; Major Research Infrastructure Program award [1040106]Additional Links
https://www.atmos-meas-tech.net/10/3073/2017/ae974a485f413a2113503eed53cd6c53
10.5194/amt-10-3073-2017
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.