Show simple item record

dc.contributor.authorAndrews, Jennifer E.
dc.contributor.authorSmith, Nathan
dc.contributor.authorMcCully, C.
dc.contributor.authorFox, Ori D.
dc.contributor.authorValenti, S.
dc.contributor.authorHowell, D. A.
dc.date.accessioned2017-10-06T19:32:58Z
dc.date.available2017-10-06T19:32:58Z
dc.date.issued2017-11
dc.identifier.citationOptical and IR observations of SN 2013L, a Type IIn Supernova surrounded by asymmetric CSM 2017, 471 (4):4047 Monthly Notices of the Royal Astronomical Societyen
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.doi10.1093/mnras/stx1844
dc.identifier.urihttp://hdl.handle.net/10150/625795
dc.description.abstractWe present optical and near-IR photometry and spectroscopy of SN 2013L for the first 4 yr post-explosion. SN 2013L was a moderately luminous (M-r = -19.0) Type IIn supernova (SN) that showed signs of strong shock interaction with the circumstellar medium (CSM). The CSM interaction was equal to or stronger to SN 1988Z for the first 200 d and is observed at all epochs after explosion. Optical spectra revealed multicomponent hydrogen lines appearing by day 33 and persisting and slowly evolving over the next few years. By day 1509, the Ha emission was still strong and exhibiting multiple peaks, hinting that the CSM was in a disc or torus around the SN. SN 2013L is part of a growing subset of SNe IIn that shows both strong CSM interaction signatures and the underlying broad lines from the SN ejecta photosphere. The presence of a blue Ha emission bump and a lack of a red peak does not appear to be due to dust obscuration since an identical profile is seen in Pa beta. Instead this suggests a high concentration of material on the near-side of the SN or a disc inclination of roughly edge-on and hints that SN 2013L was part of a massive interactive binary system. Narrow Ha P-Cygni lines that persist through the entirety of the observations measure a progenitor outflow speed of 80-130 km s(-1), speeds normally associated with extreme red supergiants, yellow hypergiants, or luminous blue variable winds. This progenitor scenario is also consistent with an inferred progenitor mass-loss rate of 0.3-8.0 x 10(-3) M-circle dot yr(-1).
dc.description.sponsorshipNational Science Foundation (NSF) [AST-1210599, AST-1312221]en
dc.language.isoenen
dc.publisherOXFORD UNIV PRESSen
dc.relation.urlhttp://academic.oup.com/mnras/article/471/4/4047/4002684/Optical-and-IR-observations-of-SN-2013L-a-Type-IInen
dc.rights© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectcircumstellar matteren
dc.subjectsupernovae: generalen
dc.subjectstars: windsen
dc.subjectoutflowsen
dc.titleOptical and IR observations of SN 2013L, a Type IIn Supernova surrounded by asymmetric CSMen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Steward Observen
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-09-11T23:27:48Z
html.description.abstractWe present optical and near-IR photometry and spectroscopy of SN 2013L for the first 4 yr post-explosion. SN 2013L was a moderately luminous (M-r = -19.0) Type IIn supernova (SN) that showed signs of strong shock interaction with the circumstellar medium (CSM). The CSM interaction was equal to or stronger to SN 1988Z for the first 200 d and is observed at all epochs after explosion. Optical spectra revealed multicomponent hydrogen lines appearing by day 33 and persisting and slowly evolving over the next few years. By day 1509, the Ha emission was still strong and exhibiting multiple peaks, hinting that the CSM was in a disc or torus around the SN. SN 2013L is part of a growing subset of SNe IIn that shows both strong CSM interaction signatures and the underlying broad lines from the SN ejecta photosphere. The presence of a blue Ha emission bump and a lack of a red peak does not appear to be due to dust obscuration since an identical profile is seen in Pa beta. Instead this suggests a high concentration of material on the near-side of the SN or a disc inclination of roughly edge-on and hints that SN 2013L was part of a massive interactive binary system. Narrow Ha P-Cygni lines that persist through the entirety of the observations measure a progenitor outflow speed of 80-130 km s(-1), speeds normally associated with extreme red supergiants, yellow hypergiants, or luminous blue variable winds. This progenitor scenario is also consistent with an inferred progenitor mass-loss rate of 0.3-8.0 x 10(-3) M-circle dot yr(-1).


Files in this item

Thumbnail
Name:
Andrews_et_al_Optical_and_IR_o ...
Size:
4.870Mb
Format:
PDF
Description:
FInal Published Version

This item appears in the following Collection(s)

Show simple item record