• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Image Inpainting Based on Exemplars and Sparse Representation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15827_sip1_m.pdf
    Size:
    33.58Mb
    Format:
    PDF
    Download
    Author
    Ding, Ding
    Issue Date
    2017
    Keywords
    Exemplar-based image inpainting
    Multiresolution
    Nonlocal texture matching
    Object removal
    Texture synthesis
    Advisor
    Rodriguez, Jeffrey J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Image inpainting is the process of recovering missing or deteriorated data within the digital images and videos in a plausible way. It has become an important topic in the area of image processing, which leads to the understanding of the textural and structural information within the images. Image inpainting has many different applications, such as image/video restoration, text/object removal, texture synthesis, and transmission error concealment. In recent years, many algorithms have been developed to solve the image inpainting problem, which can be roughly grouped into four categories, partial differential equation-based inpainting, exemplar-based inpainting, transform domain inpainting, and hybrid image inpainting. However, the existing algorithms do not work well when the missing region to be inpainted is large, and when there are textural and structural information needed to be recovered. To address this inpainting problem, we propose multiple algorithms, 1) perceptually aware image inpainting based on the perceptual-fidelity aware mean squared error metric, 2) image inpainting using nonlocal texture matching and nonlinear filtering, and 3) multiresolution exemplar-based image inpainting. The experimental results show that our proposed algorithms outperform other existing algorithms with respect to both qualitative analysis and observer studies when inpainting the missing regions of images.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.