• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Processing of Silicon Nitride Ceramics Produced by Spark Plasma Sintering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15848_sip1_m.pdf
    Size:
    176.5Mb
    Format:
    PDF
    Description:
    Dissertation not available in ...
    Download
    Author
    Schnittker, Kimberlin
    Issue Date
    2017
    Keywords
    mechanical properties
    phase composition
    Silicon nitride
    Spark plasma sintering
    Advisor
    Corral, Erica L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Dissertation not available (per author's request)
    Abstract
    Four silicon nitride powder blends vary in starting powder characteristics, glass chemistry, and phase composition. This work focuses on how these properties influence densification behavior, microstructural development, and the resulting mechanical performance of dense ceramics. Previous work completed on alpha-rich, low oxide containing (8 wt%), and fine silicon nitride powder (GS-44) showed high hardness equiaxed with grained ceramic. GS-44 served as an excellent precursor for the matrix phase material in graphene reinforced composites, which resulted in 235% increase in toughness and high hardness retention [1] with the addition of 1.5 vol% graphene. As the GS-44 powder is no longer in production, investigative work into other commercial powders and customization of powder blends was initiated. Commercial blends were selected based on availability, high alpha content, fine particle size, and additive chemistry (Al2O3, MgO, and Y2O3). The objective was to understand which powder characteristics led to a ceramic design that contained high hardness, strength, and toughness properties in order to increase the use of silicon nitride in extreme temperature environments. One such example is aerospace and structural applications that require a high-performance material that is lightweight and good thermal stability. Strong covalent bonding in silicon nitride make densification of powders extremely difficult; thereby, sintering additives are necessary to promote liquid phase sintering processes. Compaction of ceramic powders was carried out using a spark plasma sintering (SPS) furnace by utilizing a pulsed direct current through a conductive graphite die that encapsulates the sample powder. SPS was preferred over other conventional sintering methods owing to its high heating rate and short dwell times at the sintering target temperature. Thus, SPS provides superior control for tailoring the final silicon nitride properties by producing a hard alpha-phase and tough beta-phase microstructures. The custom blend developed had an appreciable amount of media wear included during the milling process that increased the additive content. Development of the custom blend was used to understand the effect of a larger additive content. Commercial GS-44 blend was used as the control to track the effect of adjusting specific surface area and oxide content in silicon nitride powder systems (HCS-M, C-R3, and UA-SN). The mechanical results for the four matrix systems, showed that toughness increased with grain coarsening and minimization of alumina content in beta silicon nitride. Based on these findings it is important to determine tradeoffs (i.e. balance of high hardness, toughness, and strength) to engineer an optimal ceramic that can be used for structural and aerospace applications.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.