• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Creating an experimental testbed for information-theoretic analysis of architectures for x-ray anomaly detection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1018709.pdf
    Size:
    2.786Mb
    Format:
    PDF
    Description:
    FInal Published Version
    Download
    Author
    Coccarelli, David
    Greenberg, Joel A.
    Mandava, Sagar
    Gong, Qian
    Huang, Liang-Chih
    Ashok, Amit
    Gehm, Michael E.
    Affiliation
    Univ Arizona, ECE Dept
    Univ Arizona, Coll Opt Sci
    Issue Date
    2017-05-01
    Keywords
    Information Theory
    High Dimensionality
    X-Ray System Geometry
    X-Ray System Architecture
    
    Metadata
    Show full item record
    Publisher
    SPIE-INT SOC OPTICAL ENGINEERING
    Citation
    David Coccarelli, Joel A. Greenberg, Sagar Mandava, Qian Gong, Liang-Chih Huang, Amit Ashok, Michael E. Gehm, "Creating an experimental testbed for information-theoretic analysis of architectures for x-ray anomaly detection", Proc. SPIE 10187, Anomaly Detection and Imaging with X-Rays (ADIX) II, 1018709 (1 May 2017); doi: 10.1117/12.2263033; http://dx.doi.org/10.1117/12.2263033
    Journal
    ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX) II
    Rights
    © 2017 SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Anomaly detection requires a system that can reliably convert measurements of an object into knowledge about that object. Previously, we have shown that an information-theoretic approach to the design and analysis of such systems provides insight into system performance as it pertains to architectural variations in source fluence, view number/angle, spectral resolution, and spatial resolution.(1) However, this work was based on simulated measurements which, in turn, relied on assumptions made in our simulation models and virtual objects. In this work, we describe our experimental testbed capable of making transmission x-ray measurements. The spatial, spectral, and temporal resolution is sufficient to validate aspects of the simulation-based framework, including the forward models, bag packing techniques, and performance analysis. In our experimental CT system, designed baggage is placed on a rotation stage located between a tungsten-anode source and a spectroscopic detector array. The setup is able to measure a full 360 rotation with 18,000 views, each of which defines a 10 ms exposure of 1,536 detector elements, each with 64 spectral channels. Measurements were made of 1,000 bags that comprise 100 clutter instantiations each with 10 different target materials. Moreover, we develop a systematic way to generate bags representative of our desired clutter and target distributions. This gives the dataset a statistical significance valuable in future investigations.
    ISSN
    0277-786X
    DOI
    10.1117/12.2263033
    Version
    Final published version
    Sponsors
    US Department of Homeland Security through the Advanced X-Ray Material Discrimination Program
    Additional Links
    http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2263033
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2263033
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.