Show simple item record

dc.contributor.authorChingandu, Nomatter
dc.contributor.authorKouakou, Koffie
dc.contributor.authorAka, Romain
dc.contributor.authorAmeyaw, George
dc.contributor.authorGutierrez, Osman A.
dc.contributor.authorHerrmann, Hans-Werner
dc.contributor.authorBrown, Judith K.
dc.date.accessioned2017-11-17T16:41:06Z
dc.date.available2017-11-17T16:41:06Z
dc.date.issued2017-10-19
dc.identifier.citationThe proposed new species, cacao red vein virus, and three previously recognized badnavirus species are associated with cacao swollen shoot disease 2017, 14 (1) Virology Journalen
dc.identifier.issn1743-422X
dc.identifier.pmid29052506
dc.identifier.doi10.1186/s12985-017-0866-6
dc.identifier.urihttp://hdl.handle.net/10150/626087
dc.description.abstractBackground: Cacao swollen shoot virus (CSSV), Cacao swollen shoot CD virus (CSSCDV), and Cacao swollen shoot Togo A virus (CSSTAV) cause cacao swollen shoot disease (CSSD) in West Africa. During 2000-2003, leaf and shoot-swelling symptoms and rapid tree death were observed in cacao in Cote d'Ivoire and Ghana. Molecular tests showed positive infection in only similar to 50-60% of symptomatic trees, suggesting the possible emergence of an unknown badnavirus. Methods: The DNA virome was determined from symptomatic cacao samples using Illumina-Hi Seq, and sequence accuracy was verified by Sanger sequencing. The resultant 14, and seven previously known, full-length badnaviral genomic and RT-RNase H sequences were analyzed by pairwise distance analysis to resolve species relationships, and by Maximum likelihood (ML) to reconstruct phylogenetic relationships. The viral coding and non-coding sequences, genome organization, and predicted conserved protein domains (CPDs) were identified and characterized at the species level. Results: The 21 CSSD-badnaviral genomes and RT-RNase H sequences shared 70-100% and 72-100% identity, respectively. The RT-RNase H analysis predicted four species, based on an >= 80% species cutoff. The ML genome sequence tree resolved three well-supported clades, with >= 70% bootstrap, whereas, the RT-RNase H phylogeny was poorly resolved, however, both trees grouped CSSD isolates within one large clade, including the newly discovered Cacao red vein virus (CRVV) proposed species. The genome arrangement of the four species consists of four, five, or six predicted open reading frames (ORFs), and the CPDs have similar architectures. By comparison, two New World cacao-infecting badnaviruses encode four ORFs, and harbor CPDs like the West African species. Conclusions: Three previously recognized West African cacao-infecting badnaviral species were identified, and a fourth, previously unidentified species, CRVV, is described for the first time. The CRVV is a suspect causal agent of the rapid decline phenotype, however Koch's Postulates have not been proven. To reconcile viral evolutionary with epidemiology considerations, more detailed information about CSSD-genomic variability is essential. Also, the functional basis for the multiple genome arrangements and subtly distinct CPD architectures among cacao-infecting badnaviruses is poorly understood. New knowledge about functional relationships may help explain the diverse symptomatologies observed in affected cacao trees.
dc.description.sponsorshipUSDA-ARS [6038-21,000-023-07]; MARS, Inc. [58-6631-6-123]; World Cocoa Foundation Foundationen
dc.language.isoenen
dc.publisherBIOMED CENTRAL LTDen
dc.relation.urlhttp://virologyj.biomedcentral.com/articles/10.1186/s12985-017-0866-6en
dc.rights© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCaulimoviridaeen
dc.subjectCacao virusen
dc.subjectDouble-stranded DNA plant virusen
dc.subjectMealybug-transmitted virusen
dc.subjectPararetrovirusen
dc.titleThe proposed new species, cacao red vein virus, and three previously recognized badnavirus species are associated with cacao swollen shoot diseaseen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Sch Plant Scien
dc.identifier.journalVirology Journalen
dc.description.noteOpen Access Journal.en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-07-03T01:53:10Z
html.description.abstractBackground: Cacao swollen shoot virus (CSSV), Cacao swollen shoot CD virus (CSSCDV), and Cacao swollen shoot Togo A virus (CSSTAV) cause cacao swollen shoot disease (CSSD) in West Africa. During 2000-2003, leaf and shoot-swelling symptoms and rapid tree death were observed in cacao in Cote d'Ivoire and Ghana. Molecular tests showed positive infection in only similar to 50-60% of symptomatic trees, suggesting the possible emergence of an unknown badnavirus. Methods: The DNA virome was determined from symptomatic cacao samples using Illumina-Hi Seq, and sequence accuracy was verified by Sanger sequencing. The resultant 14, and seven previously known, full-length badnaviral genomic and RT-RNase H sequences were analyzed by pairwise distance analysis to resolve species relationships, and by Maximum likelihood (ML) to reconstruct phylogenetic relationships. The viral coding and non-coding sequences, genome organization, and predicted conserved protein domains (CPDs) were identified and characterized at the species level. Results: The 21 CSSD-badnaviral genomes and RT-RNase H sequences shared 70-100% and 72-100% identity, respectively. The RT-RNase H analysis predicted four species, based on an >= 80% species cutoff. The ML genome sequence tree resolved three well-supported clades, with >= 70% bootstrap, whereas, the RT-RNase H phylogeny was poorly resolved, however, both trees grouped CSSD isolates within one large clade, including the newly discovered Cacao red vein virus (CRVV) proposed species. The genome arrangement of the four species consists of four, five, or six predicted open reading frames (ORFs), and the CPDs have similar architectures. By comparison, two New World cacao-infecting badnaviruses encode four ORFs, and harbor CPDs like the West African species. Conclusions: Three previously recognized West African cacao-infecting badnaviral species were identified, and a fourth, previously unidentified species, CRVV, is described for the first time. The CRVV is a suspect causal agent of the rapid decline phenotype, however Koch's Postulates have not been proven. To reconcile viral evolutionary with epidemiology considerations, more detailed information about CSSD-genomic variability is essential. Also, the functional basis for the multiple genome arrangements and subtly distinct CPD architectures among cacao-infecting badnaviruses is poorly understood. New knowledge about functional relationships may help explain the diverse symptomatologies observed in affected cacao trees.


Files in this item

Thumbnail
Name:
s12985-017-0866-6.pdf
Size:
2.226Mb
Format:
PDF
Description:
FInal Published Version

This item appears in the following Collection(s)

Show simple item record

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.
Except where otherwise noted, this item's license is described as © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.