• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Evolution of Cell Cycle Regulation, Cellular Differentiation, and Sexual Traits during the Evolution of Multicellularity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15883_sip1_m.pdf
    Size:
    10.78Mb
    Format:
    PDF
    Download
    Author
    Hanschen, Erik Richard
    Issue Date
    2017
    Keywords
    anisogamy
    genomics
    green algae
    multicellularity
    sex
    volvocine
    Advisor
    Michod, Richard E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    During the evolution of multicellularity from unicellular ancestors, cells transition from being evolutionary individuals to components of more complex, multicellular evolutionary individuals. The volvocine green algae provide a powerful model system for understanding the genetic and morphological changes that underlie and are caused by the evolution of multicellularity. This dissertation concerns the role of cell cycle regulation, cellular differentiation, and sexual traits during the evolution of multicellularity. While some of these are shown to be causally important in the origins of multicellularity (Appendix B), others are driven by the evolution of multicellularity (Appendix D). We provide a review of recent mathematical models on the evolution of multicellularity, which are found to focus heavily on the later, subsequent stages of the evolution of multicellular complexity. We found that many of these models assume multicellular ancestors and instead evolve cellular differentiation, bringing attention to a gap in our understanding of the events in the initial stages of the evolution of multicellularity. We show that a focus on the early stages of the evolution of multicellularity reveals a powerful and critical role for regulation of the cell cycle at the origins of multicellularity (Appendix B). We further find that the genetic basis for cellular differentiation evolved sometime after the evolution of cell cycle regulation. We find that while the genetic basis for cellular differentiation evolved after cell cycle regulation, it also evolved earlier than previously predicted in the volvocine green algae, suggesting an important role in undifferentiated species (Appendix C). Lastly, having elucidated the origins and evolution of multicellularity, we find that multicellularity causes the evolution of sexual traits including anisogamy, internal fertilization, and subsequently sexual dimorphism (Appendix D). This work emphasizes the important role that multicellularity plays in driving the evolution of sexual diversity seen across the eukaryotic tree and well as informs critical hypotheses on the evolution of anisogamous sex, among the most challenging problems in evolutionary theory.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Ecology & Evolutionary Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.