Show simple item record

dc.contributor.authorOmori, Y.
dc.contributor.authorChown, R.
dc.contributor.authorSimard, G.
dc.contributor.authorStory, K. T.
dc.contributor.authorAylor, K.
dc.contributor.authorBaxter, E. J.
dc.contributor.authorBenson, B. A.
dc.contributor.authorBleem, L. E.
dc.contributor.authorCarlstrom, J. E.
dc.contributor.authorChang, C. L.
dc.contributor.authorCho, H-M.
dc.contributor.authorCrawford, T. M.
dc.contributor.authorCrites, A. T.
dc.contributor.authorHaan, T. de
dc.contributor.authorDobbs, M. A.
dc.contributor.authorEverett, W. B.
dc.contributor.authorGeorge, E. M.
dc.contributor.authorHalverson, N. W.
dc.contributor.authorHarrington, N. L.
dc.contributor.authorHolder, G. P.
dc.contributor.authorHou, Z.
dc.contributor.authorHolzapfel, W. L.
dc.contributor.authorHrubes, J. D.
dc.contributor.authorKnox, L.
dc.contributor.authorLee, A. T.
dc.contributor.authorLeitch, E. M.
dc.contributor.authorLuong-Van, D.
dc.contributor.authorManzotti, A.
dc.contributor.authorMarrone, Daniel P.
dc.contributor.authorMcMahon, J. J.
dc.contributor.authorMeyer, S. S.
dc.contributor.authorMocanu, L. M.
dc.contributor.authorMohr, J. J.
dc.contributor.authorNatoli, T.
dc.contributor.authorPadin, S.
dc.contributor.authorPryke, C.
dc.contributor.authorReichardt, C. L.
dc.contributor.authorRuhl, J. E.
dc.contributor.authorSayre, J. T.
dc.contributor.authorSchaffer, K. K.
dc.contributor.authorShirokoff, E.
dc.contributor.authorStaniszewski, Z.
dc.contributor.authorStark, A. A.
dc.contributor.authorVanderlinde, K.
dc.contributor.authorVieira, J. D.
dc.contributor.authorWilliamson, R.
dc.contributor.authorZahn, O.
dc.date.accessioned2017-12-04T23:15:30Z
dc.date.available2017-12-04T23:15:30Z
dc.date.issued2017-11-07
dc.identifier.citationA 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data 2017, 849 (2):124 The Astrophysical Journalen
dc.identifier.issn1538-4357
dc.identifier.doi10.3847/1538-4357/aa8d1d
dc.identifier.urihttp://hdl.handle.net/10150/626179
dc.description.abstractWe present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg(2) SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader l coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C-L(phi phi), and compare it to the theoretical prediction for a.CDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95(-0.06)(+0.06) (stat.)(-0.01)(+0.01)+ (sys.). The null hypothesis of no lensing is rejected at a significance of 24 sigma. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C-L(phi) G, between the SPT+ Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C-L(phi G) to a power law of the form p(L) = a(L/L-0)(-b) with a, L-0, and b fixed, and find eta(phi G) = C-L(phi G)/p(L) = 0.94(-0.04)(+0.04), which is marginally lower, but in good agreement with eta(phi G) = 1.00-(+0.02)(0.01), the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over similar to 67% of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg(2) field.
dc.description.sponsorshipNational Science Foundation [PLR-1248097, OCI-0725070, ACI-1238993]; NSF Physics Frontier Center grant [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation through Grant GBMF [947]; Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program; Australian Research Council Future Fellowship [FT150100074]; Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy; National Aeronautics and Space Administration; U.S. Department of Energy [DE-AC02-06CH11357]; Canada Foundation for Innovation (CFI); ministere de l'Economie, de la science et de l'innovation du Quebec (MESI); Fonds de recherche du Quebec-Natureet technologies (FRQ-NT); state of Illinoisen
dc.language.isoenen
dc.publisherIOP PUBLISHING LTDen
dc.relation.urlhttp://stacks.iop.org/0004-637X/849/i=2/a=124?key=crossref.3be8590827051c108a9421f065484cdben
dc.rights© 2017. The American Astronomical Society. All rights reserved.en
dc.subjectcosmic background radiationen
dc.subjectgravitational lensing: weaken
dc.subjectlarge-scale structure of universeen
dc.titleA 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Dataen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Steward Observen
dc.identifier.journalThe Astrophysical Journalen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-09-12T00:20:21Z
html.description.abstractWe present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg(2) SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader l coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C-L(phi phi), and compare it to the theoretical prediction for a.CDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95(-0.06)(+0.06) (stat.)(-0.01)(+0.01)+ (sys.). The null hypothesis of no lensing is rejected at a significance of 24 sigma. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C-L(phi) G, between the SPT+ Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C-L(phi G) to a power law of the form p(L) = a(L/L-0)(-b) with a, L-0, and b fixed, and find eta(phi G) = C-L(phi G)/p(L) = 0.94(-0.04)(+0.04), which is marginally lower, but in good agreement with eta(phi G) = 1.00-(+0.02)(0.01), the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over similar to 67% of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg(2) field.


Files in this item

Thumbnail
Name:
Omori_2017_ApJ_849_124.pdf
Size:
3.012Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record