Temperature response surfaces for mortality risk of tree species with future drought
Name:
Adams_2017_Environ._Res._Lett. ...
Size:
1.658Mb
Format:
PDF
Description:
Final Published Version
Author
Adams, Henry DBarron-Gafford, Greg A
Minor, Rebecca L
Gardea, Alfonso A
Bentley, Lisa Patrick
Law, Darin J
Breshears, David D
McDowell, Nate G
Huxman, Travis E
Affiliation
Univ Arizona, Dept Ecol & Evolutionary BiolUniv Arizona, Sch Nat Resources & Environm
Issue Date
2017-11-01Keywords
droughttree mortality
Pinus edulis
Pinus ponderosa
temperature
tree die-off
climate change ecology
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
Temperature response surfaces for mortality risk of tree species with future drought 2017, 12 (11):115014 Environmental Research LettersJournal
Environmental Research LettersRights
© 2017 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 degrees C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per degrees C for P. edulis; 5.8% per. C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration-many more short droughts than long droughts-these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.Note
UA Open Access Publishing Fund.Open access journal
ISSN
1748-9326Version
Final published versionSponsors
Biosphere 2, though the Philecology Foundation (Fort Worth, TX); Los Alamos National Laboratory program; Pacific Northwest National Laboratory LDRD program; US DOE Biological and Environmental Research; NSF Macrosystems Biology [EF-1340624, EF-1550756]; NSF Critical Zone Observatories [EAR-1331408]; Arizona Agriculture Experiment Station; Oklahoma State University College of Arts and Sciences; STAR by the US Environmental Protection Agency (EPA) [FP-91717801-0]Additional Links
http://stacks.iop.org/1748-9326/12/i=11/a=115014?key=crossref.ae96d7b5a16a2e958699b7c36e7c6bcbae974a485f413a2113503eed53cd6c53
10.1088/1748-9326/aa93be
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2017 The Author(s). Published by IOP Publishing Ltd. Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.