Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents
Name:
Schlosser_et_al-2017-Journal_o ...
Size:
1.326Mb
Format:
PDF
Description:
Final Published Version
Author
Schlosser, Joseph S.
Braun, Rachel A.

Bradley, Trevor

Dadashazar, Hossein

MacDonald, Alexander B.

Aldhaif, Abdulmonam A.

Aghdam, Mojtaba Azadi

Mardi, Ali Hossein
Xian, Peng

Sorooshian, Armin

Affiliation
Univ Arizona, Dept Chem & Environm EngnUniv Arizona, Dept Hydrol & Atmospher Sci
Issue Date
2017-08-27
Metadata
Show full item recordPublisher
AMER GEOPHYSICAL UNIONCitation
Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents 2017, 122 (16):8951 Journal of Geophysical Research: AtmospheresRights
©2017. American Geophysical Union. All Rights Reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
This study examines major wildfires in the western United States between 2005 and 2015 to determine which species exhibit the highest percent change in mass concentration on day of peak fire influence relative to preceding nonfire days. Forty-one fires were examined using the Environmental Protection Agency (EPA) Interagency Monitoring of Protected Visual Environments (IMPROVE) data set. Organic carbon (OC) and elemental carbon (EC) constituents exhibited the highest percent change increase. The sharpest enhancements were for the volatile (OC1) and semivolatile (OC2) OC fractions, suggestive of secondary organic aerosol formation during plume transport. Of the noncarbonaceous constituents, Cl, P, K, NO3-, and Zn levels exhibited the highest percent change. Dust was significantly enhanced in wildfire plumes, based on significant enhancements in fine soil components (i.e., Si, Ca, Al, Fe, and Ti) and PMcoarse (i.e., PM10-PM2.5). A case study emphasized how transport of wildfire plumes significantly impacted downwind states, with higher levels of fine soil and PMcoarse at the downwind state (Arizona) as compared to the source of the fires (California). A global model (Navy Aerosol Analysis and Prediction System, NAAPS) did not capture the dust influence over California or Arizona during this case event because it is not designed to resolve dust dynamics in fires, which motivates improved treatment of such processes. Significant chloride depletion was observed on the peak EC day for almost a half of the fires examined. Size-resolved measurements during two specific fires at a coastal California site revealed significant chloride reductions for particle aerodynamic diameters between 1 and 10 mu m.Note
6 month embargo; published online: 27 Aug 2017.ISSN
2169897XPubMed ID
28955601Version
Final published versionSponsors
National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program [2 P42 ES04940]; ONR [N00014-16-1-2567, N00014-10-1-0811]; NASA/HQ; Agilent Technologies; U.S. Environmental Protection Agency; National Park ServiceAdditional Links
http://doi.wiley.com/10.1002/2017JD026547ae974a485f413a2113503eed53cd6c53
10.1002/2017JD026547
Scopus Count
Collections
Related articles
- Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles.
- Authors: Braun RA, Dadashazar H, MacDonald AB, Aldhaif AM, Maudlin LC, Crosbie E, Aghdam MA, Hossein Mardi A, Sorooshian A
- Issue date: 2017 Aug 15
- Carbonaceous aerosol characteristics in outdoor and indoor environments of Nanchang, China, during summer 2009.
- Authors: Huang H, Zou C, Cao J, Tsang P
- Issue date: 2011 Nov
- Sources, frequency, and chemical nature of dust events impacting the United States East Coast.
- Authors: Aldhaif AM, Lopez DH, Dadashazar H, Sorooshian A
- Issue date: 2020 Jun 15
- Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period.
- Authors: Nguyen DL, Kim JY, Ghim YS, Shim SG
- Issue date: 2015 Mar
- Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.
- Authors: van Drooge BL, Lopez JF, Grimalt JO
- Issue date: 2012 Nov