Kosbar, Kurt; Kitchen, Seth; Klinger, Daniel; Telemetry Learning Center Department of Electrical and Computer Engineering Missouri University of Science and Technology (International Foundation for Telemetering, 2017-10)
      This paper describes a telemetry system for a high-powered rocket entered in the Intercollegiate Rocket Engineering Competition hosted by the Experimental Sounding Rocket Association. On-board the rocket GPS coordinates,acceleration, magnetic field and lux readings are collected,along with other data. The data is sent between internal systems using commercial Internet-of-Things boards that utilize IEEE 802.11 wireless protocols. The aggregated data is transmitted to a ground station through a monopole transmitting antenna and custom designed helical receiving antenna such that in the event of a crash, data is not lost. The ground station data recovery is performed using a commercial XBee transceiver, before being displayed in real time for tracking and safety purposes,and stored for future data analysis. The target apogee is 9 km, so real time GPS data will be useful for both tracking and vehicle recovery operations.