Kosbar, Kurt; Mormile, Melanie; Marcolina, Rebecca C.; Osibodu, Olugbenga O.; Missouri University of Science and Technology (International Foundation for Telemetering, 2017-10)
      This paper explores the telemetry of the power distribution system utilized onboard a semi-autonomous Mars rover. The Missouri S&T Mars Rover Design Team designs and fabricates such a rover to compete in the University Rover Challenge, a competition whose tasks simulate a future manned mission to Mars. To maximize efficiency during competition, the rover’s modular power distribution system consists of three separate units: a 72 Watt-hour, Lithium-polymer battery pack; a custom Battery Management System (BMS); and a central power board. The BMS and power board measure and process electrical and environmental data autonomously, creating a self-regulating system onboard the rover. The two also form a communication chain between team teleoperators and the battery pack. This continuous stream of real-time data enables the team to quickly monitor the rover’s safe operation, to make informed decisions during competition, and to apply this data to the design of future power systems.