• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Application of Industrial Wastewater Effluent in Growth of Algae -- Effects of Heavy Metals on the Growth Rate, Fatty Acid and Lipid Content of Chlorella Sorokiniana and Scenedesmus Obliquus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15918_sip1_m.pdf
    Size:
    2.240Mb
    Format:
    PDF
    Download
    Author
    Udeozor, Jude Onyeka
    Issue Date
    2017
    Keywords
    CHLORELLA SOROKINIANA
    HEAVY METALS
    Microalgae
    SCENEDESMUS OBLIQUUS
    Wastewater
    Advisor
    Ogden, Kimberly L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Growing interest in biofuel production from non-fossil fuel sources has resulted in several studies exploring different raw material sources as feedstock, including many algae species, for large-scale production of biofuel. Algae are promising feedstock due to advantages such as its short growth cycle, high biomass production, and lipid content. However, there are still challenges to overcome in order to use algae for commercial biofuel production. One of these challenges is the requirement for a large quantity of water and nutrients needed for growing large quantities of the algae. This work explores a potential solution to this challenge by studying the possibility of using industrial wastewater to grow algae for biofuel production. However, many industrial wastewaters, including effluents from semiconductor processing plants, are known to contain heavy metals that are toxic to humans and the environment. In this work, the effects of four of such metals ions, As(V), As(III), Ga(III), and In(III) on Chlorella sorokiniana and Scenedesmus obliquus strains were studied. In particular, the heavy metal toxicity on the strains, effects on its growth rate, biomass yield, lipid content and fatty acid methyl esters (FAME) were studied. Also, the effect of controlling pH on growth rate, biomass yield, lipid content, and FAME was studied for Chlorella sorokiniana in the presence of Ga(III). The results of the study confirmed the toxicity of these metals on both strains. However, Ga(III) and In(III) had the highest effect, while As(V) showed the least toxicity to the strains, with Chlorella sorokiniana withstanding concentrations of As(V) as high as 140mg/L. The heavy metals were slightly more toxic to Scenedesmus obliquus compared to Chlorella sorokiniana. In addition, the heavy metals reduced the growth rate of both strains. High percent changes in growth rate (more than 50%) were seen in cultures containing Ga(III) and In(III). Furthermore, concentration measurements with Inductively Coupled Plasma Optical Emission Spectrometer (ICP) before, during, and at the end of the growth period, showed that Scenedesmus obliquus adsorbed higher amounts of the heavy metals compared to Chlorella sorokiniana. Microalgae biosorption of heavy metals limits its end use, hence making Scenedesmus obliquus a less favorable option for this study, but may be a better choice for wastewater treatment applications. The effects of the four metals on the lipid content and FAME profile of Chlorella sorokiniana were studied. The result showed an increase in Chlorella sorokiniana lipid content in the presence of In(III), but a decrease in the presence of As(V) and As(III). The heavy metals had effects on the strain’s FAME compositions. The fatty acid composition included C16:0, C16:1, C16:2, C16:3, C18:0, C18:1, ω-6, C18:2, ω-6, and C18:3, ω-3 accounting for more than 97% of the total FAME composition. Furthermore, controlling the pH of the culture in the presence of Ga(III) at 6.5 led to higher adsorption of the heavy metal, increase in lipid content, but no significant change in FAME composition.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.