• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Influence of Soil Physical and Chemical Properties on Soil Co2 Flux in Semi-Arid Green Stormwater Infrastructure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16023_sip1_m.pdf
    Size:
    15.43Mb
    Format:
    PDF
    Description:
    Master's Thesis
    Download
    Thumbnail
    Name:
    azu_etd_16023_Appendix.zip
    Size:
    21.18Mb
    Format:
    Unknown
    Description:
    Supplemental file: Appendix
    Download
    Author
    Rockhill, Tyler K.
    Issue Date
    2017
    Keywords
    Ecohydrology
    Green Infrastructure
    Hydrology
    Low Impact Development
    Microbiology
    Soil Science
    Advisor
    Meixner, Thomas
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Rapid population growth and urbanization in semi-arid and arid regions has led to alterations in the water, carbon (C), and nitrogen (N) cycles (Gallo et al. 2014), prompting demands for mitigation strategies. Green Infrastructure (GI) is one of the methods used in urban storm water mitigation that delays and attenuates stormwater runoff by storing water in vegetated depressions. In the Southwest these depressions, also called bioswales, have the potential to act as biogeochemical hot spots, encouraging nutrient cycling, infiltration, plant growth, and microbial activity (McClain et al. 2003). An influx of water to GI initiates a combination of physical and microbial processes that result in increased CO2 efflux and N mineralization known as the Birch Effect (Birch, 1958). This study examines GI in Tucson, AZ through inducing an artificial precipitation regime and determining how soil properties, GI design, and biogeochemical characteristics influence the response. In natural systems it has been shown that soil moisture, soil properties, organic matter, length of dry period, nutrients such as carbon and nitrogen, and microbial biomass influence soil respiration and nitrogen mineralization (Borken and Matzner 2009). The purpose of this study is to determine the role that the Birch Effect plays in urban stormwater GI. Additionally we seek to determine how soil and nutrient properties and precipitation regime affect the amplitude of the response. It was found that soils from GI features tend to have higher concentrations of organic matter, total carbon, and total nitrogen, as well as higher water holding capacity and lower bulk density. It was also shown that soils originating from GI features tend to illicit a greater CO2 flux upon rewetting than soils from adjacent areas. The linear relationships found between % clay, pH, bulk density, WHC, SOM, TC, and TN suggest that the reason for the greater response to wetting is due to the altered physiochemical composition. The results of this study can be utilized to increase microbial activity and remediation in urban GI features. This fits into the larger goal of GI to help mitigate many of the issues associated with Urban Stream Syndrome (USS) such as flashier hydrography response, increased nutrient and contaminant concentrations, increased erosion, altered channel morphology and reduced biodiversity (Meyers et al. 2005).
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.