HOMINID: a framework for identifying associations between host genetic variation and microbiome composition
dc.contributor.author | Lynch, Joshua | |
dc.contributor.author | Tang, Karen | |
dc.contributor.author | Priya, Sambhawa | |
dc.contributor.author | Sands, Joanna | |
dc.contributor.author | Sands, Margaret | |
dc.contributor.author | Tang, Evan | |
dc.contributor.author | Mukherjee, Sayan | |
dc.contributor.author | Knights, Dan | |
dc.contributor.author | Blekhman, Ran | |
dc.date.accessioned | 2018-02-12T16:43:07Z | |
dc.date.available | 2018-02-12T16:43:07Z | |
dc.date.issued | 2017-11-08 | |
dc.identifier.citation | HOMINID: a framework for identifying associations between host genetic variation and microbiome composition 2017, 6 (12):1 GigaScience | en |
dc.identifier.issn | 2047-217X | |
dc.identifier.doi | 10.1093/gigascience/gix107 | |
dc.identifier.uri | http://hdl.handle.net/10150/626556 | |
dc.description.abstract | Recent studies have uncovered a strong effect of host genetic variation on the composition of host-associated microbiota. Here, we present HOMINID, a computational approach based on Lasso linear regression, that given host genetic variation and microbiome taxonomic composition data, identifies host single nucleotide polymorphisms (SNPs) that are correlated with microbial taxa abundances. Using simulated data, we show that HOMINID has accuracy in identifying associated SNPs and performs better compared with existing methods. We also show that HOMINID can accurately identify the microbial taxa that are correlated with associated SNPs. Lastly, by using HOMINID on real data of human genetic variation and microbiome composition, we identified 13 human SNPs in which genetic variation is correlated with microbiome taxonomic composition across body sites. In conclusion, HOMINID is a powerful method to detect host genetic variants linked to microbiome composition and can facilitate discovery of mechanisms controlling host-microbiome interactions. | |
dc.description.sponsorship | University of Minnesota College of Biological Sciences; Randy Shaver Cancer Research and Community Fund; American Cancer Society [124166-IRG-58-001-55-IRG53]; Alfred P. Sloan Foundation | en |
dc.language.iso | en | en |
dc.publisher | OXFORD UNIV PRESS | en |
dc.relation.url | http://academic.oup.com/gigascience/article/6/12/1/4602854 | en |
dc.rights | © The Author(s) 2017. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | microbiome | en |
dc.subject | host genetics | en |
dc.subject | association | en |
dc.subject | machine learning | en |
dc.title | HOMINID: a framework for identifying associations between host genetic variation and microbiome composition | en |
dc.type | Article | en |
dc.contributor.department | Univ Arizona, Dept Agr & Biosyst Engn | en |
dc.identifier.journal | GigaScience | en |
dc.description.note | Open Access Journal. | en |
dc.description.collectioninformation | This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu. | en |
dc.eprint.version | Final published version | en |
refterms.dateFOA | 2018-07-14T11:38:58Z | |
html.description.abstract | Recent studies have uncovered a strong effect of host genetic variation on the composition of host-associated microbiota. Here, we present HOMINID, a computational approach based on Lasso linear regression, that given host genetic variation and microbiome taxonomic composition data, identifies host single nucleotide polymorphisms (SNPs) that are correlated with microbial taxa abundances. Using simulated data, we show that HOMINID has accuracy in identifying associated SNPs and performs better compared with existing methods. We also show that HOMINID can accurately identify the microbial taxa that are correlated with associated SNPs. Lastly, by using HOMINID on real data of human genetic variation and microbiome composition, we identified 13 human SNPs in which genetic variation is correlated with microbiome taxonomic composition across body sites. In conclusion, HOMINID is a powerful method to detect host genetic variants linked to microbiome composition and can facilitate discovery of mechanisms controlling host-microbiome interactions. |