• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Biogeochemical Response of Metal(Loid)S to a Phytostabilization Remediation Approach on Acidic Iron Sulfide Tailings at the Iron King Mine and Humboldt Smelter Superfund Site in Semi-Arid Central Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15927_sip1_m.pdf
    Size:
    21.70Mb
    Format:
    PDF
    Download
    Author
    Hammond, Corin
    Issue Date
    2017
    Keywords
    Arsenic
    Iron
    Mine Tailings
    Phytoremediation
    Phytostabilization
    Synchrotron XAS
    Advisor
    Chorover, Jon
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Particulate and dissolved forms of arsenic and heavy metals are released from legacy mine tailings, particularly in (semi-) arid environments where tailings remain barren of vegetation and therefore highly susceptible to erosion. This leads to contamination of adjacent ecosystems and increased risk to public health. Establishment of a vegetative cap using amendments, such as composted organic matter to enhance plant growth, may be employed to reduce both physical erosion and leaching, but the impacts of such practices on molecular-scale mechanisms controlling metal(loid) speciation and lability remain poorly understood. Here we report on subsurface biogeochemical transformations of metal(loid)s in a phytostabilization field study at a Superfund site in Arizona, USA, where a legacy pyritic tailings (4,000 mg kg^-1 As, 2,438 mg kg^-1 Pb, 6,142 mg kg^-1 Zn, 13.25% Fe, and 11.71% S, averages for the top 0.5 m) has undergone oxidation in the top 1 m. Tailings were amended in the top 20 cm with 10%, 15%, and 20% composted organic matter by mass and seeded with native halotolerant plant species. All field treatments and the uncomposted control received irrigation of 0.36 ± 0.03 mm y^-1 in addition to 0.25 ± 0.16 mm y^-1 of precipitation, resulting in water input of 144% the annual precipitation rate. The field trial incorporated four annual samplings from 2010 – 2013. Sampling consisted of a single core of 90 cm in length and 2.54 cm in diameter collected from each field plot that was subsequently sectioned into 20 cm depth increments for analysis by synchrotron Fe and As X-ray absorption spectroscopy (XAS) coupled with quantitative chemical extraction methods. Subsurface stabilization of arsenic by Prosopis juliflora (mesquite) was investigated by bulk and micro synchrotron XAS and multiple-energy microscale fluorescence mapping combined with chemical digestion of plant samples following 1, 2, and 3 months of growth in greenhouse microcosms as well as 14 and 36 months of growth at the field site. Results indicate persistence of oxidizing conditions following compost amendment in surface tailings despite addition of organic matter, development of heterotrophic microbial communities and irrigation of a poorly draining medium. Compost amendment of 20% corresponded with evidence of higher oxidative pyrite weathering activity at 40-60 cm depth during phytostabilization compared to treatments of 0% or 10% compost for which the highest oxidative pyrite weathering activity was observed closer to the surface at 20-40 cm depth.. Despite observed downward transport of As, Fe, Zn, Mn, Pb, Ni, Cu, Cr, V, and Co during phytostabilization, ≥ 75% of total As was found to be attenuated by ferrihydrite in surface depths. Attenuation of Mn, Co, and Ni was observed below 40 depth by tailings receiving compost amendment relative to the irrigated control. Root associated As(V) was immobilized on the root epidermis bound to ferric sulfate precipitates and within root vacuoles as trivalent As(III)-thiol complexes. Rhizoplane associated ferric sulfate phases were dissimilar from the bulk tailings mineralogy shown by XAS and exhibited a high capacity to scavenge As(V) with As:Fe ratios 2x higher than the compost amended growth medium, indicating a root surface mechanism for their formation or accumulation. Results indicate that arsenate attenuation in semi-arid mine tailings during phytostabilization greatly depends on the presence of high concentrations of Fe(III) (oxyhydr)oxide minerals with a high capacity for arsenic adsorption.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.