• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Methodology for Daylight Optimization towards Net Zero Buildings in Hot Arid Climate Case Studies the Visitor Center at the Organ Pipe Cactus National Monuments, Ajo, Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15902_sip1_m.pdf
    Size:
    10.05Mb
    Format:
    PDF
    Download
    Author
    Alsalih, Hussein Ali Naser
    Issue Date
    2017
    Advisor
    Chalfoun, Nader
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    World energy consumption attends to increase in all sectors, which leads to more CO2 emissions and air pollution. In 2016, the Energy Information Administration (EIA) projects that world energy consumption will increase up to 48% by 2040. The building sector is the largest consumer of the energy. Consequently, the global needs a universal proposal to mitigate and reduce the impacts on the environment and the natural resources. The energy consumption is accumulative of different aspects, such as buildings, transportation, industrial and other sectors. The building sector is the largest consumer of the energy. The energy consumption in the building is accumulative of different aspects of the annual usage, such as cooling, heating, lighting, and others. For instance, lighting consumes up to 22 % in the commercial buildings and 14% in the residential buildings in the hot-arid climate (Arizona). Therefore, this study focuses on proposing a method of daylight optimization that leads to Net-zero energy buildings in the hot-arid climate. Achieving Net Zero buildings needs high efficient buildings at the first step to make the task more affordable. By exploring and applying the daylight optimization strategies, energy consumption will be reduced in the way that cut down the CO2 emissions and the air pollution. These strategies attempt to turn off the artificial lighting during the useful daylight illuminance and provides a comfortable level for the occupancies. The Daylight passive technique usually categories under three main topics, which are the Sidelighting, Toplighting, and Corelighting. Furthermore, the daylight performance is assessed through different methods, such as daylight factor, daylight autonomy, glare index and the useful daylight illuminance. The method in this study is proposing passive daylight strategies and, testing how the new strategy would contribute to achieving the net-zero status, and validate the results (physical and digital experiments have been conducted to achieve the optimum proposal) to maintain the daylight through the building envelope (shading device, and fenestrations orientation sizes and materials).
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Architecture
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.