• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chronic Arsenite Exposure in Lung Epithelium Modulates Endocytosis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16057_sip1_m.pdf
    Size:
    2.218Mb
    Format:
    PDF
    Download
    Author
    Hunjan, Anoop Singh
    Issue Date
    2017
    Keywords
    Albumin
    Arsenic
    BEAS-2B
    Endocytosis
    LDL
    Transferrin
    Advisor
    Klimecki, Walter T.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 1-December-2018
    Abstract
    Arsenic exposure in humans has been implicated in the development of a myriad of non-cancerous and cancerous diseases. A reductionist approach to understanding this unusual phenomenon would suggest that arsenic-induced perturbation of a small number of fundamental biological processes could manifest as this diverse array of disease endpoints. Endocytosis is a fundamental cellular process involved in the internalization and transport of various extracellular molecules and membranous components. BEAS-2B, a human bronchial epithelial cell line, was used to characterize the effects of chronic arsenite exposure on endocytosis. Fluorophore-labeled bovine albumin, human transferrin, and human low-density lipoprotein (LDL) were the substrates utilized to measure endocytosis in BEAS-2B cells. The uptake of albumin in unexposed BEAS-2B cells is both dose-dependent and temperature sensitive. Chronic arsenite exposure in BEAS-2B cells increased the uptake of albumin by 3.4-fold after 8 hours of uptake relative to unexposed BEAS-2B cells. Pharmacological studies utilizing endocytosis inhibitors suggested that the uptake of albumin in both unexposed and arsenite-exposed BEAS-2B cells occurs through a combination of receptor-mediated endocytosis and macropinocytosis. Chronic arsenite exposure in BEAS-2B cells also increased the endocytic uptake of transferrin by 2.9-fold at 30 minutes and LDL by 1.3-fold at 2 hours relative to unexposed BEAS-2B cells. Together, the data suggests that chronic arsenite exposure can increase the rate of endocytosis. This novel finding could add mechanistic insight to the conundrum of arsenic-associated human diseases.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Molecular & Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.