Soil Moisture Variability in Land Surface-Atmosphere Interactions
Author
White, Cary BlakeIssue Date
1996Advisor
Shuttleworth, W. James
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modeling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behavior was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters are used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain falling in a typical convective storm (commonly 10% of the vegetation's root zone saturation), in a semi-arid environment, any non-linearity in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeHydrology and Water Resources
