• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Quantifying the effects of forest vegetation on snow accumulation, ablation, and potential meltwater inputs, Valles Caldera National Preserve, NM, USA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hwr_0831_sip1_w.pdf
    Size:
    52.13Mb
    Format:
    PDF
    Download
    Author
    Musselman, Keith N.
    Issue Date
    2006
    Advisor
    Brooks, Paul D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    I quantified the competing effects of forest vegetation on snow accumulation and ablation in a lower mid-latitude montane environment where solar radiation dominates winter snow-atmosphere energy fluxes and limited work has been focused. Detailed snowpit analyses and ultrasonic snow depth sensors indicated forest vegetation affected snowcover in three ways; canopy interception and sloughing, enhanced snowpack metamorphism and ablation, and shading of direct solar radiation. Competing accumulation and melt processes determine the snow cover duration, SWE yield, and potential meltwater inputs. On average, canopy interception resulted in 44% less SWE accumulating beneath the canopy. I observed an inverse correlation between snowpack density and grain size with distance from the tree bole at maximum accumulation. Larger grains and lower densities near the bole indicated enhanced metamorphism of the near tree snowpack. Snow surveys around 15 trees at max accumulation indicated that the north sides of trees had 24.6% (p=0.01) more SWE than south tree sides. Micro- to tree scale observations support our stand and catchment-scale finding that a shaded snowpack experiences increased SWE accumulation, decreased ablation and melt rates, and prolonged seasonal snow cover. Specifically, we found that vegetative shading may delay the basin average maximum SWE accumulation by up to three weeks and greatly increase snow cover duration by minimizing snowmelt rates. Data point to compelling differences in forest ablation and melt processes in this lower mid-latitude where enhanced insolation augments the physical processes observed elsewhere. A binary regression tree model indicated strong correlation (R 2 = 0.54) between micro-scale (i.e. 10-cm resolution) canopy structure indices and snow depth, suggesting that future remotely sensed vegetation data may improve snow distribution models. A better understanding of the effects of forest cover on a basin's snowpack will prepare us to more accurately predict the potentially wide-ranging hydrologic impacts of climate, land cover, and land use change in these seasonally snow covered forested environments.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Hydrology and Water Resources
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.